Suppr超能文献

手性识别与拓扑异构酶 IIα 的扭结依赖松弛机制。

Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα.

机构信息

Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Biol Chem. 2013 May 10;288(19):13695-703. doi: 10.1074/jbc.M112.444745. Epub 2013 Mar 18.

Abstract

BACKGROUND

Human topoisomerase IIα unlinks catenated chromosomes and preferentially relaxes positive supercoils.

RESULTS

Supercoil chirality, twist density, and tension determine topoisomerase IIα relaxation rate and processivity.

CONCLUSION

Strand passage rate is determined by the efficiency of transfer segment capture that is modulated by the topoisomerase C-terminal domains.

SIGNIFICANCE

Single-molecule measurements reveal the mechanism of chiral discrimination and tension dependence of supercoil relaxation by human topoisomerase IIα. Type IIA topoisomerases (Topo IIA) are essential enzymes that relax DNA supercoils and remove links joining replicated chromosomes. Human topoisomerase IIα (htopo IIα), one of two human isoforms, preferentially relaxes positive supercoils, a feature shared with Escherichia coli topoisomerase IV (Topo IV). The mechanistic basis of this chiral discrimination remains unresolved. To address this important issue, we measured the relaxation of individual supercoiled and "braided" DNA molecules by htopo IIα using a magnetic tweezers-based single-molecule assay. Our study confirmed the chiral discrimination activity of htopo IIα and revealed that the strand passage rate depends on DNA twist, tension on the DNA, and the C-terminal domain (CTD). Similar to Topo IV, chiral discrimination by htopo IIα results from chiral interactions of the CTDs with DNA writhe. In contrast to Topo IV, however, these interactions lead to chiral differences in relaxation rate rather than processivity. Increasing tension or twist disrupts the CTD-DNA interactions with a subsequent loss of chiral discrimination. Together, these results suggest that transfer segment (T-segment) capture is the rate-limiting step in the strand passage cycle. We propose a model for T-segment capture that provides a mechanistic basis for chiral discrimination and provides a coherent explanation for the effects of DNA twist and tension on eukaryotic type IIA topoisomerases.

摘要

背景

人类拓扑异构酶 IIα 解开连环染色体,并优先松弛正超螺旋。

结果

超螺旋手性、扭转密度和张力决定拓扑异构酶 IIα 的松弛速率和连续性。

结论

链转移速率由转移片段捕获的效率决定,而转移片段捕获的效率受拓扑异构酶 C 末端结构域的调节。

意义

单分子测量揭示了人拓扑异构酶 IIα 区分手性和超螺旋松弛对张力依赖性的机制。Ⅱ A 型拓扑异构酶(Topo IIA)是一种必需的酶,可松弛 DNA 超螺旋并去除连接复制染色体的连接。人拓扑异构酶 IIα(htopo IIα)是两种人同工酶之一,优先松弛正超螺旋,这一特性与大肠杆菌拓扑异构酶 IV(Topo IV)相同。这种手性区分的机制仍未解决。为了解决这个重要问题,我们使用基于磁镊的单分子测定法测量了 htopo IIα 对单个超螺旋和“编织”DNA 分子的松弛作用。我们的研究证实了 htopo IIα 的手性区分活性,并揭示了链转移速率取决于 DNA 扭转、DNA 张力和 C 末端结构域(CTD)。与 Topo IV 相似,htopo IIα 的手性区分是由 CTD 与 DNA 扭曲的手性相互作用引起的。然而,与 Topo IV 不同,这些相互作用导致松弛速率而不是连续性的手性差异。增加张力或扭转会破坏 CTD-DNA 相互作用,随后丧失手性区分。总之,这些结果表明转移片段(T 片段)捕获是链转移循环中的限速步骤。我们提出了一个 T 片段捕获模型,为手性区分提供了一个机械基础,并为 DNA 扭转和张力对真核 IIA 拓扑异构酶的影响提供了一个连贯的解释。

相似文献

1
Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα.
J Biol Chem. 2013 May 10;288(19):13695-703. doi: 10.1074/jbc.M112.444745. Epub 2013 Mar 18.
3
Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks.
J Biol Chem. 2005 Nov 25;280(47):39337-45. doi: 10.1074/jbc.M503320200. Epub 2005 Sep 27.
4
Mechanisms of chiral discrimination by topoisomerase IV.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6986-91. doi: 10.1073/pnas.0900574106. Epub 2009 Apr 9.
6
Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8654-9. doi: 10.1073/pnas.1133178100. Epub 2003 Jul 11.
9
Distinct regions of the Escherichia coli ParC C-terminal domain are required for substrate discrimination by topoisomerase IV.
J Mol Biol. 2013 Sep 9;425(17):3029-45. doi: 10.1016/j.jmb.2013.04.033. Epub 2013 Jul 15.
10
Catalytic core of human topoisomerase IIα: insights into enzyme-DNA interactions and drug mechanism.
Biochemistry. 2014 Oct 21;53(41):6595-602. doi: 10.1021/bi5010816. Epub 2014 Oct 10.

引用本文的文献

1
Substrate accessibility regulation of human TopIIa decatenation by cohesin.
Nat Commun. 2025 Aug 5;16(1):7200. doi: 10.1038/s41467-025-62505-3.
3
Protocol for effective surface passivation for single-molecule studies of chromatin and topoisomerase II.
STAR Protoc. 2025 Mar 21;6(1):103500. doi: 10.1016/j.xpro.2024.103500. Epub 2024 Dec 17.
4
Human Topoisomerase IIα Promotes Chromatin Condensation Via a Phase Transition.
bioRxiv. 2024 Oct 18:2024.10.15.618281. doi: 10.1101/2024.10.15.618281.
5
Chromatinization modulates topoisomerase II processivity.
Nat Commun. 2023 Oct 27;14(1):6844. doi: 10.1038/s41467-023-42600-z.
6
Chromatinization Modulates Topoisomerase II Processivity.
bioRxiv. 2023 Oct 4:2023.10.03.560726. doi: 10.1101/2023.10.03.560726.
9
Etoposide promotes DNA loop trapping and barrier formation by topoisomerase II.
Nat Chem Biol. 2023 May;19(5):641-650. doi: 10.1038/s41589-022-01235-9. Epub 2023 Jan 30.
10
Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases.
Biochemistry. 2022 Oct 4;61(19):2148-2158. doi: 10.1021/acs.biochem.2c00370. Epub 2022 Sep 19.

本文引用的文献

1
Direct observation of strand passage by DNA-topoisomerase and its limited processivity.
PLoS One. 2012;7(4):e34920. doi: 10.1371/journal.pone.0034920. Epub 2012 Apr 9.
2
All tangled up: how cells direct, manage and exploit topoisomerase function.
Nat Rev Mol Cell Biol. 2011 Nov 23;12(12):827-41. doi: 10.1038/nrm3228.
3
RECQL5 cooperates with Topoisomerase II alpha in DNA decatenation and cell cycle progression.
Nucleic Acids Res. 2012 Feb;40(4):1621-35. doi: 10.1093/nar/gkr844. Epub 2011 Oct 19.
4
Magnetic tweezers for single-molecule manipulation.
Methods Mol Biol. 2011;783:265-93. doi: 10.1007/978-1-61779-282-3_15.
5
Single-molecule measurements of topoisomerase activity with magnetic tweezers.
Methods Mol Biol. 2011;778:229-41. doi: 10.1007/978-1-61779-261-8_15.
6
Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity.
Nucleic Acids Res. 2011 Nov 1;39(20):8665-76. doi: 10.1093/nar/gkr556. Epub 2011 Jul 15.
7
Statistical determination of the step size of molecular motors.
J Phys Condens Matter. 2005 Nov 30;17(47):S3811-20. doi: 10.1088/0953-8984/17/47/012. Epub 2005 Nov 4.
8
The torsional state of DNA within the chromosome.
Chromosoma. 2011 Aug;120(4):323-34. doi: 10.1007/s00412-011-0324-y. Epub 2011 May 13.
9
A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22055-9. doi: 10.1073/pnas.1012938107. Epub 2010 Nov 12.
10
Single-molecule measurements of DNA topology and topoisomerases.
J Biol Chem. 2010 Jun 18;285(25):18967-71. doi: 10.1074/jbc.R109.092437. Epub 2010 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验