Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
J Biol Chem. 2013 May 10;288(19):13695-703. doi: 10.1074/jbc.M112.444745. Epub 2013 Mar 18.
Human topoisomerase IIα unlinks catenated chromosomes and preferentially relaxes positive supercoils.
Supercoil chirality, twist density, and tension determine topoisomerase IIα relaxation rate and processivity.
Strand passage rate is determined by the efficiency of transfer segment capture that is modulated by the topoisomerase C-terminal domains.
Single-molecule measurements reveal the mechanism of chiral discrimination and tension dependence of supercoil relaxation by human topoisomerase IIα. Type IIA topoisomerases (Topo IIA) are essential enzymes that relax DNA supercoils and remove links joining replicated chromosomes. Human topoisomerase IIα (htopo IIα), one of two human isoforms, preferentially relaxes positive supercoils, a feature shared with Escherichia coli topoisomerase IV (Topo IV). The mechanistic basis of this chiral discrimination remains unresolved. To address this important issue, we measured the relaxation of individual supercoiled and "braided" DNA molecules by htopo IIα using a magnetic tweezers-based single-molecule assay. Our study confirmed the chiral discrimination activity of htopo IIα and revealed that the strand passage rate depends on DNA twist, tension on the DNA, and the C-terminal domain (CTD). Similar to Topo IV, chiral discrimination by htopo IIα results from chiral interactions of the CTDs with DNA writhe. In contrast to Topo IV, however, these interactions lead to chiral differences in relaxation rate rather than processivity. Increasing tension or twist disrupts the CTD-DNA interactions with a subsequent loss of chiral discrimination. Together, these results suggest that transfer segment (T-segment) capture is the rate-limiting step in the strand passage cycle. We propose a model for T-segment capture that provides a mechanistic basis for chiral discrimination and provides a coherent explanation for the effects of DNA twist and tension on eukaryotic type IIA topoisomerases.
人类拓扑异构酶 IIα 解开连环染色体,并优先松弛正超螺旋。
超螺旋手性、扭转密度和张力决定拓扑异构酶 IIα 的松弛速率和连续性。
链转移速率由转移片段捕获的效率决定,而转移片段捕获的效率受拓扑异构酶 C 末端结构域的调节。
单分子测量揭示了人拓扑异构酶 IIα 区分手性和超螺旋松弛对张力依赖性的机制。Ⅱ A 型拓扑异构酶(Topo IIA)是一种必需的酶,可松弛 DNA 超螺旋并去除连接复制染色体的连接。人拓扑异构酶 IIα(htopo IIα)是两种人同工酶之一,优先松弛正超螺旋,这一特性与大肠杆菌拓扑异构酶 IV(Topo IV)相同。这种手性区分的机制仍未解决。为了解决这个重要问题,我们使用基于磁镊的单分子测定法测量了 htopo IIα 对单个超螺旋和“编织”DNA 分子的松弛作用。我们的研究证实了 htopo IIα 的手性区分活性,并揭示了链转移速率取决于 DNA 扭转、DNA 张力和 C 末端结构域(CTD)。与 Topo IV 相似,htopo IIα 的手性区分是由 CTD 与 DNA 扭曲的手性相互作用引起的。然而,与 Topo IV 不同,这些相互作用导致松弛速率而不是连续性的手性差异。增加张力或扭转会破坏 CTD-DNA 相互作用,随后丧失手性区分。总之,这些结果表明转移片段(T 片段)捕获是链转移循环中的限速步骤。我们提出了一个 T 片段捕获模型,为手性区分提供了一个机械基础,并为 DNA 扭转和张力对真核 IIA 拓扑异构酶的影响提供了一个连贯的解释。