HKUST-DT System and Media Laboratory, Hong Kong University of Science and Technology, 999077, Hong Kong.
Centre for Computational Systems Biology, Fudan University, Shanghai 200433, China.
Phys Rev E. 2017 May;95(5-1):052103. doi: 10.1103/PhysRevE.95.052103. Epub 2017 May 3.
We investigate multiple random walks traversing independently and concurrently on complex networks and introduce the concept of mean first parallel passage time (MFPPT) to quantify their search efficiency. The mean first parallel passage time represents the expected time required to find a given target by one or some of the multiple walkers. We develop a general theory that allows us to calculate the MFPPT analytically. Interestingly, we find that the global MFPPT follows a harmonic law with respect to the global mean first passage times of the associated walkers. Remarkably, when the properties of multiple walkers are identical, the global MFPPT decays in a power law manner with an exponent of unity, irrespective of network structure. These findings are confirmed by numerical and theoretical results on various synthetic and real networks. The harmonic law reveals a universal principle governing multiple random walks on networks that uncovers the contribution and role of the combined walkers in a target search. Our paradigm is also applicable to a broad range of random search processes.
我们研究了在复杂网络上独立和并发进行的多个随机游走,并引入了平均首次并行通过时间(MFPPT)的概念来量化它们的搜索效率。平均首次并行通过时间表示通过一个或多个多个游走者找到给定目标所需的预期时间。我们开发了一种通用理论,允许我们对 MFPPT 进行分析计算。有趣的是,我们发现全局 MFPPT 与相关游走者的全局平均首次通过时间呈调和定律关系。值得注意的是,当多个游走者的特性相同时,全局 MFPPT 以单位指数的幂律方式衰减,而与网络结构无关。这些发现通过对各种合成和真实网络的数值和理论结果得到了证实。调和定律揭示了支配网络上多个随机游走的普遍原理,揭示了组合游走者在目标搜索中的贡献和作用。我们的范例也适用于广泛的随机搜索过程。