Suppr超能文献

最小生成树过滤随时间尺度和波动大小变化的相关性。

Minimum spanning tree filtering of correlations for varying time scales and size of fluctuations.

机构信息

Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland.

Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland.

出版信息

Phys Rev E. 2017 May;95(5-1):052313. doi: 10.1103/PhysRevE.95.052313. Epub 2017 May 17.

Abstract

Based on a recently proposed q-dependent detrended cross-correlation coefficient, ρ_{q} [J. Kwapień, P. Oświęcimka, and S. Drożdż, Phys. Rev. E 92, 052815 (2015)PLEEE81539-375510.1103/PhysRevE.92.052815], we generalize the concept of the minimum spanning tree (MST) by introducing a family of q-dependent minimum spanning trees (qMSTs) that are selective to cross-correlations between different fluctuation amplitudes and different time scales of multivariate data. They inherit this ability directly from the coefficients ρ_{q}, which are processed here to construct a distance matrix being the input to the MST-constructing Kruskal's algorithm. The conventional MST with detrending corresponds in this context to q=2. In order to illustrate their performance, we apply the qMSTs to sample empirical data from the American stock market and discuss the results. We show that the qMST graphs can complement ρ_{q} in disentangling "hidden" correlations that cannot be observed in the MST graphs based on ρ_{DCCA}, and therefore, they can be useful in many areas where the multivariate cross-correlations are of interest. As an example, we apply this method to empirical data from the stock market and show that by constructing the qMSTs for a spectrum of q values we obtain more information about the correlation structure of the data than by using q=2 only. More specifically, we show that two sets of signals that differ from each other statistically can give comparable trees for q=2, while only by using the trees for q≠2 do we become able to distinguish between these sets. We also show that a family of qMSTs for a range of q expresses the diversity of correlations in a manner resembling the multifractal analysis, where one computes a spectrum of the generalized fractal dimensions, the generalized Hurst exponents, or the multifractal singularity spectra: the more diverse the correlations are, the more variable the tree topology is for different q's. As regards the correlation structure of the stock market, our analysis exhibits that the stocks belonging to the same or similar industrial sectors are correlated via the fluctuations of moderate amplitudes, while the largest fluctuations often happen to synchronize in those stocks that do not necessarily belong to the same industry.

摘要

基于最近提出的依赖于 q 的去趋势交叉相关系数 ρ_{q} [J. Kwapień, P. Oświęcimka, 和 S. Drożdż, Phys. Rev. E 92, 052815 (2015)PLEEE81539-375510.1103/PhysRevE.92.052815],我们通过引入一族依赖于 q 的最小生成树 (qMST) 来推广最小生成树 (MST) 的概念,这些最小生成树对多元数据的不同波动幅度和不同时间尺度之间的交叉相关性具有选择性。它们直接从系数 ρ_{q} 中继承了这种能力,这里对系数 ρ_{q} 进行处理,以构建距离矩阵,作为 MST 构建 Kruskal 算法的输入。在这种情况下,具有去趋势的传统 MST 对应于 q=2。为了说明它们的性能,我们将 qMST 应用于来自美国股票市场的经验数据,并讨论结果。我们表明,qMST 图可以补充 ρ_{q},以分离在基于 ρ_{DCCA} 的 MST 图中无法观察到的“隐藏”相关性,因此,它们在许多对多元交叉相关性感兴趣的领域都可能有用。例如,我们将这种方法应用于股票市场的经验数据,并表明通过为一系列 q 值构建 qMST,我们获得了比仅使用 q=2 更多的数据相关结构信息。更具体地说,我们表明,从统计学上彼此不同的两组信号可以为 q=2 生成相似的树,而只有通过使用 q≠2 的树,我们才能区分这两组信号。我们还表明,qMST 族在 q 的范围内表达相关性的多样性,类似于多分数分析,其中计算广义分数维数、广义赫斯特指数或多重分形奇异谱的谱:相关性越多样化,不同 q 的树拓扑变化就越大。关于股票市场的相关性结构,我们的分析表明,属于同一或相似行业的股票通过中等幅度的波动相关,而最大的波动往往在不一定属于同一行业的股票中同步发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验