Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0225, USA.
Université de Toulouse, UPS-OMP, IRAP, Toulouse, France and CNRS, IRAP, 14 Avenue Edouard Belin, F-31400 Toulouse, France.
Phys Rev E. 2017 May;95(5-1):053116. doi: 10.1103/PhysRevE.95.053116. Epub 2017 May 30.
Inertial modes are the eigenmodes of contained rotating fluids restored by the Coriolis force. When the fluid is incompressible, inviscid, and contained in a rigid container, these modes satisfy Poincaré's equation that has the peculiarity of being hyperbolic with boundary conditions. Inertial modes are, therefore, solutions of an ill-posed boundary-value problem. In this paper, we investigate the mathematical side of this problem. We first show that the Poincaré problem can be formulated in the Hilbert space of square-integrable functions, with no hypothesis on the continuity or the differentiability of velocity fields. We observe that with this formulation, the Poincaré operator is bounded and self-adjoint, and as such, its spectrum is the union of the point spectrum (the set of eigenvalues) and the continuous spectrum only. When the fluid volume is an ellipsoid, we show that the inertial modes form a complete base of polynomial velocity fields for the square-integrable velocity fields defined over the ellipsoid and meeting the boundary conditions. If the ellipsoid is axisymmetric, then the base can be identified with the set of Poincaré modes, first obtained by Bryan [Philos. Trans. R. Soc. London 180, 187 (1889)PTRMAD1364-503X10.1098/rsta.1889.0006], and completed with the geostrophic modes.
惯性模式是由科里奥利力恢复的封闭旋转流体的本征模式。当流体不可压缩、无粘性且封闭在刚性容器中时,这些模式满足具有边界条件的双曲型特殊性的 Poincaré 方程。因此,惯性模式是不适定边值问题的解。在本文中,我们研究了这个问题的数学方面。我们首先证明,Poincaré 问题可以在平方可积函数的 Hilbert 空间中进行表述,而无需对速度场的连续性或可微性进行假设。我们观察到,通过这种表述,Poincaré 算子是有界自伴随的,因此,其谱是点谱(特征值集)和连续谱的并集。当流体积是一个椭球体时,我们证明惯性模式构成了在椭球体上定义的平方可积速度场的多项式速度场的完备基,这些速度场满足边界条件。如果椭球体是轴对称的,那么基可以与由 Bryan [Philos. Trans. R. Soc. London 180, 187 (1889)PTRMAD1364-503X10.1098/rsta.1889.0006]首次获得的 Poincaré 模式集以及地转模式集相匹配。