Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev E. 2017 May;95(5-1):052608. doi: 10.1103/PhysRevE.95.052608. Epub 2017 May 24.
We have studied spatial and temporal dynamic heterogeneity (DH) in a system of hard-sphere particles, subjected to active forces with constant amplitude and random direction determined by rotational diffusion with correlation time τ. We have used a variety of observables to characterize the DH behavior, including the deviation from standard Stokes-Einstein (SE) relation, a non-Gaussian parameter α_{2}(Δt) for the distribution of particle displacement within a certain time interval Δt, a four-point susceptibility χ_{4}(Δt,ΔL) for the correlation in dynamics between any two points in space separated by distance ΔL within some time window Δt, and a vector spatial-temporal correlation function S_{vec}(R,Δt) for vector displacements within time interval Δt of particle pairs originally separated by R. By mapping the particle motion into a continuous-time random walk with constant jump length, we can obtain the average waiting time 〈t_{x}〉∝D_{s}^{-1} and persistence time 〈t_{p}〉∝η, with D_{s} the self-diffusion coefficient and η the shear viscosity, such that the observable λ=〈t_{p}〉/〈t_{x}〉∝D_{s}η can be calculated as a function of the control parameter τ to show how it deviates from its SE value λ_{0}. Interestingly, we find λ/λ_{0} shows a nonmonotonic behavior for large volume fraction φ_{a}, wherein λ/λ_{0} undergoes a minimum at a certain intermediate value of τ, indicating that both small and large particle activity may lead to strong DH. Such a reentrance phenomenon is further demonstrated in terms of the non-Gaussian parameters α_{2}, four-point susceptibility χ_{4}, and vector spatiotemporal correlation functions S_{vec}, respectively. Detail analysis shows that it is the competition between the dual roles of particle activity, namely, activity-induced higher effective temperature and activity-induced clustering, that leads to such nontrivial nonmonotonic behaviors. In addition, we find that DH may also show a maximum level at an intermediate value of φ_{a} if τ is large enough, implying that a more crowded system may be less heterogeneous than a less crowded one for a system with high particle activity.
我们研究了硬球粒子系统中的时空动态异质性(DH),该系统受到幅度恒定且方向随机的主动力的作用,由具有相关时间 τ 的旋转扩散决定。我们使用了各种可观测量来描述 DH 行为,包括偏离标准的斯托克斯-爱因斯坦(SE)关系、在一定时间间隔 Δt 内粒子位移分布的非高斯参数 α_{2}(Δt)、在某个时间窗口 Δt 内任意两点之间的动力学相关性的四点灵敏度 χ_{4}(Δt,ΔL),以及在粒子对之间的向量时空相关函数 S_{vec}(R,Δt),其中粒子对在时间间隔 Δt 内分离距离 R。通过将粒子运动映射到具有恒定跳跃长度的连续时间随机行走中,我们可以获得平均等待时间 〈t_{x}〉∝D_{s}^{-1}和持续时间 〈t_{p}〉∝η,其中 D_{s}是自扩散系数,η是剪切粘度,使得可观测量 λ=〈t_{p}〉/〈t_{x}〉∝D_{s}η可以作为控制参数 τ 的函数进行计算,以显示其如何偏离其 SE 值 λ_{0}。有趣的是,我们发现 λ/λ_{0}在大体积分数 φ_{a}下表现出非单调行为,其中 λ/λ_{0}在 τ 的某个中间值处经历最小值,这表明小和大的粒子活性都可能导致强烈的 DH。这种再进入现象分别在非高斯参数 α_{2}、四点灵敏度 χ_{4}和向量时空相关函数 S_{vec}中进一步得到证明。详细分析表明,正是粒子活性的双重作用之间的竞争导致了这种非单调行为,即活性诱导的更高有效温度和活性诱导的聚类。此外,如果 τ 足够大,我们还发现 DH 也可能在 φ_{a}的中间值处显示出最大值,这意味着对于具有高粒子活性的系统,一个更拥挤的系统可能比一个不那么拥挤的系统具有更低的异质性。