Suppr超能文献

格点模型中非保守相互作用的全局稳定性和 H 定理。

Global stability and H theorem in lattice models with nonconservative interactions.

机构信息

Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain.

出版信息

Phys Rev E. 2017 May;95(5-1):052121. doi: 10.1103/PhysRevE.95.052121. Epub 2017 May 12.

Abstract

In kinetic theory, a system is usually described by its one-particle distribution function f(r,v,t), such that f(r,v,t)drdv is the fraction of particles with positions and velocities in the intervals (r,r+dr) and (v,v+dv), respectively. Therein, global stability and the possible existence of an associated Lyapunov function or H theorem are open problems when nonconservative interactions are present, as in granular fluids. Here, we address this issue in the framework of a lattice model for granularlike velocity fields. For a quite general driving mechanism, including both boundary and bulk driving, we show that the steady state reached by the system in the long-time limit is globally stable. This is done by proving analytically that a certain H functional is nonincreasing in the long-time limit. Moreover, for a quite general energy injection mechanism, we are able to demonstrate that the proposed H functional is nonincreasing for all times. Also, we put forward a proof that clearly illustrates why the "classical" Boltzmann functional H_{B}[f]=∫drdvf(r,v,t)lnf(r,v,t) is inadequate for systems with nonconservative interactions. This is done not only for the simplified kinetic description that holds in the lattice models analyzed here but also for a general kinetic equation, like Boltzmann's or Enskog's.

摘要

在动理学理论中,系统通常由其单粒子分布函数 f(r,v,t) 来描述,其中 f(r,v,t)drdv 是位置在区间 (r,r+dr) 内且速度在区间 (v,v+dv) 内的粒子所占的分数。在存在非保守相互作用的情况下,例如在颗粒流中,全局稳定性和可能存在的相关李雅普诺夫函数或 H 定理是尚未解决的问题。在这里,我们在颗粒状速度场的格子模型框架内解决了这个问题。对于包括边界和体部驱动在内的相当普遍的驱动机制,我们证明了系统在长时间限制下达到的稳态是全局稳定的。这是通过分析证明某个 H 泛函在长时间限制下是非递增的来完成的。此外,对于相当普遍的能量注入机制,我们能够证明所提出的 H 泛函在所有时间都是非递增的。我们还提出了一个证明,清楚地说明了为什么“经典”玻尔兹曼函数 H_{B}[f]=∫drdvf(r,v,t)lnf(r,v,t) 对于具有非保守相互作用的系统是不充分的。这不仅适用于我们在这里分析的格子模型中所采用的简化动力学描述,也适用于一般的动力学方程,如玻尔兹曼方程或恩克塞尔方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验