Suppr超能文献

对流扩散格子玻尔兹曼方法的时间步预测。II. 双 Λ 反弹通量方案对边界层的衰减。

Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.

机构信息

Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex, France.

出版信息

Phys Rev E. 2017 Jan;95(1-1):013305. doi: 10.1103/PhysRevE.95.013305. Epub 2017 Jan 17.

Abstract

Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent improvements for the Neumann condition in the lattice Boltzmann method-advection-diffusion equation, the BB rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil. Although the d2Q5 and d3Q7 coordinate schemes are sufficient for the modeling of isotropic diffusion, the full-weight stencils are appealing for their advanced stability, isotropy, anisotropy and anti-numerical-diffusion ability. The boundary layers are not covered by the Chapman-Enskog expansion around the expected equilibrium, but they accommodate the Chapman-Enskog expansion in the bulk with the closure relation of the bounce-back rule. We show that the induced boundary layers introduce first-order errors in two primary transport properties, namely, mean velocity (first moment) and molecular diffusion coefficient (second moment). As a side effect, the Taylor-dispersion coefficient (second moment), skewness (third moment), and kurtosis (fourth moment) deviate from their physical values and predictions of the fourth-order Chapman-Enskog analysis, even though the kurtosis error in pure diffusion does not depend on grid resolution. In two- and three-dimensional grid-aligned channels and open-tubular conduits, the errors of velocity and diffusion are proportional to the diagonal weight values of the corresponding equilibrium terms. The d2Q5 and d3Q7 schemes do not suffer from this deficiency in grid-aligned geometries but they cannot avoid it if the boundaries are not parallel to the coordinate lines. In order to vanish or attenuate the disparity of the modeled transport coefficients with the equilibrium weights without any modification of the BB rule, we propose to use the two-relaxation-times collision operator with free-tunable product of two eigenfunctions Λ. Two different values Λ_{v} and Λ_{b} are assigned for bulk and boundary nodes, respectively. The rationale behind this is that Λ_{v} is adjustable for stability, accuracy, or other purposes, while the corresponding Λ_{b}(Λ_{v}) controls the primary accommodation effects. Two distinguished but similar functional relations Λ_{b}(Λ_{v}) are constructed analytically: they preserve advection velocity in parabolic profile, exactly in the two-dimensional channel and very accurately in a three-dimensional cylindrical capillary. For any velocity-weight stencil, the (local) double-Λ BB scheme produces quasi-identical solutions with the (nonlocal) specular-forward reflection for first four moments in a channel. In a capillary, this strategy allows for the accurate modeling of the Taylor-dispersion and non-Gaussian effects. As illustrative example, it is shown that in the flow around a circular obstacle, the double-Λ scheme may also vanish the dependency of mean velocity on the velocity weight; the required value for Λ_{b}(Λ_{v}) can be identified in a few bisection iterations in given geometry. A positive solution for Λ_{b}(Λ_{v}) may not exist in pure diffusion, but a sufficiently small value of Λ_{b} significantly reduces the disparity in diffusion coefficient with the mass weight in ducts and in the presence of rectangular obstacles. Although Λ_{b} also controls the effective position of straight or curved boundaries, the double-Λ scheme deals with the lower-order effects. Its idea and construction may help understanding and amelioration of the anomalous, zero- and first-order behavior of the macroscopic solution in the presence of the bulk and boundary or interface discontinuities, commonly found in multiphase flow and heterogeneous transport.

摘要

首先考察了在不可渗透固体表面上反弹(BB)反射的非物理切向平流扩散约束对浓度的前四个矩的影响。尽管最近晶格 Boltzmann 方法 - 扩散方程的 Neumann 条件有了许多改进,但 BB 规则仍然是唯一已知的适用于阶梯状多孔几何形状的局部质量守恒无通量条件。我们在直通道和圆柱毛细管中分析了 BB 规则的封闭关系,并表明它在全权重平衡网格的非平衡解中激发了 Knudsen 型边界层。尽管 d2Q5 和 d3Q7 坐标方案足以对各向同性扩散进行建模,但全权重网格因其先进的稳定性、各向同性、各向异性和抗数值扩散能力而具有吸引力。边界层未被预期平衡的Chapman-Enskog 扩展所覆盖,但它们在体积中通过 BB 规则的封闭关系容纳 Chapman-Enskog 扩展。我们表明,诱导的边界层在两个主要输运性质中引入了一阶误差,即平均速度(第一矩)和分子扩散系数(第二矩)。作为副作用,泰勒扩散系数(第二矩)、偏度(第三矩)和峰度(第四矩)偏离了它们的物理值和第四阶 Chapman-Enskog 分析的预测,尽管纯扩散中的峰度误差不依赖于网格分辨率。在二维和三维网格对齐的通道和开放管中,速度和扩散的误差与相应平衡项的对角权重值成正比。在网格对齐的几何形状中,d2Q5 和 d3Q7 方案不会受到此缺陷的影响,但如果边界不平行于坐标线,则无法避免。为了在不修改 BB 规则的情况下消除或衰减模型化输运系数与平衡权重之间的差异,我们提出使用具有自由可调两个本征函数Λ的双松弛时间碰撞算子。分别为体节点和边界节点分配两个不同的值Λ_{v}和Λ_{b}。背后的原理是Λ_{v}可用于稳定性、准确性或其他目的进行调整,而相应的 Λ_{b}(Λ_{v})控制主要的适应效果。我们从理论上构建了两种不同但相似的函数关系 Λ_{b}(Λ_{v}):它们在抛物线轮廓中保持平流速度,在二维通道中完全精确,在三维圆柱毛细管中非常准确。对于任何速度权重网格,(局部)双 Λ BB 方案在通道中产生与(非局部)镜面前反射相同的前四个矩的准解。在毛细管中,该策略允许对泰勒扩散和非高斯效应进行准确建模。作为说明性示例,它表明在围绕圆形障碍物的流动中,双 Λ 方案也可以消除平均速度对速度权重的依赖性;所需的 Λ_{b}(Λ_{v})值可以在给定几何形状的几次二分迭代中确定。在纯扩散中,正的 Λ_{b}(Λ_{v})值可能不存在,但 Λ_{b}的足够小值可显著降低管内和矩形障碍物存在时扩散系数与质量权重的差异。尽管 Λ_{b}也控制直或曲边界的有效位置,但双 Λ 方案处理较低阶效应。它的思想和结构可能有助于理解和改善在多相流和多相传输中常见的体和边界或界面不连续性存在下宏观解的异常、零阶和一阶行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验