Suppr超能文献

微小RNA与硫化氢的相互作用:一种治疗骨疾病的新方法。

Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases.

作者信息

Zhai Yuankun, Tyagi Suresh C, Tyagi Neetu

机构信息

Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.

Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.

出版信息

Biomed Pharmacother. 2017 Aug;92:1073-1084. doi: 10.1016/j.biopha.2017.06.007. Epub 2017 Jun 10.

Abstract

Bone homeostasis requires a balance between the bone formation of osteoblasts and bone resorption of osteoclasts to maintain ideal bone mass and bone quality. An imbalance in bone remodeling processes results in bone metabolic disorders such as osteoporosis. Hydrogen sulfide (HS), a gasotransmitter, has attracted the focus of many researchers due to its multiple physiological functions. It has been implicated in anti-inflammatory, vasodilatory, angiogenic, cytoprotective, anti-oxidative and anti-apoptotic mechanisms. HS has also been shown to exert osteoprotective activity through its anti-inflammatory and anti-oxidative effects. However, the underlying molecular mechanisms by which HS mitigates bone diseases are not completely understood. Experimental evidence suggests that HS may regulate signaling pathways by directly influencing a gene in the cascade or interacting with some other gasotransmitter (carbon monoxide or nitric oxide) or both. MicroRNAs (miRNAs) are short non-coding RNAs which regulate gene expression by targeting, binding and suppressing mRNAs; thus controlling cell fate. Certainly, bone remodeling is also regulated by miRNAs expression and has been reported in many studies. MicroRNAs also regulate HS biosynthesis. The inter-regulation of microRNAs and HS opens a new possibility for exploring the HS-microRNA crosstalk in bone diseases. However, the relationship between miRNAs, bone development, and HS is still not well explained. This review focuses on miRNAs and their roles in regulating bone remodeling and possible mechanisms behind HS mediated bone loss inhibition, HS-miRNAs crosstalk in relation to the pathophysiology of bone remodeling, and future perspectives for miRNA-HS as a therapeutic agent for bone diseases.

摘要

骨稳态需要成骨细胞的骨形成与破骨细胞的骨吸收之间保持平衡,以维持理想的骨量和骨质量。骨重塑过程的失衡会导致诸如骨质疏松症等骨代谢紊乱。硫化氢(HS)作为一种气体信号分子,因其多种生理功能而吸引了众多研究人员的关注。它参与了抗炎、血管舒张、血管生成、细胞保护、抗氧化和抗凋亡机制。HS还通过其抗炎和抗氧化作用发挥骨保护活性。然而,HS减轻骨疾病的潜在分子机制尚未完全阐明。实验证据表明,HS可能通过直接影响级联反应中的基因或与其他一些气体信号分子(一氧化碳或一氧化氮)或两者相互作用来调节信号通路。微小RNA(miRNA)是短的非编码RNA,通过靶向、结合和抑制mRNA来调节基因表达,从而控制细胞命运。当然,骨重塑也受miRNA表达的调节,许多研究都有报道。微小RNA还调节HS的生物合成。微小RNA与HS之间的相互调节为探索骨疾病中HS - miRNA的相互作用开辟了新的可能性。然而,miRNA、骨发育和HS之间的关系仍未得到很好的解释。本综述重点关注miRNA及其在调节骨重塑中的作用,以及HS介导的骨丢失抑制背后的可能机制、与骨重塑病理生理学相关的HS - miRNA相互作用,以及miRNA - HS作为骨疾病治疗剂的未来前景。

相似文献

1
Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases.
Biomed Pharmacother. 2017 Aug;92:1073-1084. doi: 10.1016/j.biopha.2017.06.007. Epub 2017 Jun 10.
2
Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases.
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H802-12. doi: 10.1152/ajpheart.00660.2015. Epub 2016 Jan 22.
3
The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives.
Mamm Genome. 2024 Sep;35(3):309-323. doi: 10.1007/s00335-024-10043-6. Epub 2024 Jun 4.
4
Atherosclerosis and the Hydrogen Sulfide Signaling Pathway - Therapeutic Approaches to Disease Prevention.
Cell Physiol Biochem. 2017;42(3):859-875. doi: 10.1159/000478628. Epub 2017 Jun 23.
6
Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats.
Osteoporos Int. 2017 Feb;28(2):687-695. doi: 10.1007/s00198-016-3756-7. Epub 2016 Sep 3.
7
Regulation of Bone Metabolism by microRNAs.
Curr Osteoporos Rep. 2018 Feb;16(1):1-12. doi: 10.1007/s11914-018-0417-0.
8
Matrix metalloproteinase-13: A special focus on its regulation by signaling cascades and microRNAs in bone.
Int J Biol Macromol. 2018 Apr 1;109:338-349. doi: 10.1016/j.ijbiomac.2017.12.091. Epub 2017 Dec 19.
9
LncRNA, Important Player in Bone Development and Disease.
Endocr Metab Immune Disord Drug Targets. 2020;20(1):50-66. doi: 10.2174/1871530319666190904161707.
10
Physiological Implications of Hydrogen Sulfide in Plants: Pleasant Exploration behind Its Unpleasant Odour.
Oxid Med Cell Longev. 2015;2015:397502. doi: 10.1155/2015/397502. Epub 2015 May 11.

引用本文的文献

3
Whole-Blood MicroRNA Sequence Profiling and Identification of Specific miR-21 for Adolescents With Postural Tachycardia Syndrome.
Front Neurosci. 2022 Jun 30;16:920477. doi: 10.3389/fnins.2022.920477. eCollection 2022.
4
Treadmill exercise influences the microRNA profiles in the bone tissues of mice.
Exp Ther Med. 2021 Sep;22(3):1035. doi: 10.3892/etm.2021.10467. Epub 2021 Jul 19.
6
Strontium Ameliorates Glucocorticoid Inhibition of Osteogenesis Via the ERK Signaling Pathway.
Biol Trace Elem Res. 2020 Oct;197(2):591-598. doi: 10.1007/s12011-019-02009-6. Epub 2019 Dec 12.
7
The role of the gasotransmitter hydrogen sulfide in pathological calcification.
Br J Pharmacol. 2020 Feb;177(4):778-792. doi: 10.1111/bph.14772. Epub 2019 Jul 24.
8
Hydrogen sulfide attenuates homocysteine-induced osteoblast dysfunction by inhibiting mitochondrial toxicity.
J Cell Physiol. 2019 Aug;234(10):18602-18614. doi: 10.1002/jcp.28498. Epub 2019 Mar 25.
9
Genetic susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like gene.
Osteoporos Int. 2018 Sep;29(9):2041-2047. doi: 10.1007/s00198-018-4575-9. Epub 2018 May 31.
10
Bone remodeling induced by mechanical forces is regulated by miRNAs.
Biosci Rep. 2018 Jul 2;38(4). doi: 10.1042/BSR20180448. Print 2018 Aug 31.

本文引用的文献

1
MicroRNA biogenesis pathway genes polymorphisms and cancer risk: a systematic review and meta-analysis.
PeerJ. 2016 Dec 7;4:e2706. doi: 10.7717/peerj.2706. eCollection 2016.
2
Involvement of microRNA-135a-5p in the Protective Effects of Hydrogen Sulfide Against Parkinson's Disease.
Cell Physiol Biochem. 2016;40(1-2):18-26. doi: 10.1159/000452521. Epub 2016 Nov 14.
3
Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling.
Biochem Biophys Res Commun. 2016 Sep 23;478(3):1304-9. doi: 10.1016/j.bbrc.2016.08.116. Epub 2016 Aug 22.
4
A sulfide:quinone oxidoreductase from Chlorobaculum tepidum displays unusual kinetic properties.
FEMS Microbiol Lett. 2016 Jun;363(12). doi: 10.1093/femsle/fnw100. Epub 2016 Apr 18.
5
Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1881-9. doi: 10.1073/pnas.1602532113. Epub 2016 Mar 14.
6
MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation.
Biol Proced Online. 2016 Mar 9;18:8. doi: 10.1186/s12575-016-0037-y. eCollection 2016.
7
Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases.
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H802-12. doi: 10.1152/ajpheart.00660.2015. Epub 2016 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验