MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
Science. 2017 Jun 16;356(6343):1193-1196. doi: 10.1126/science.aam7232.
Conventional adsorbents preferentially adsorb the small, high-polarity, and unsaturated 1,3-butadiene molecule over the other C hydrocarbons from which it must be separated. We show from single-crystal x-ray diffraction and computational simulation that a hydrophilic metal-organic framework, [Zn(btm)], where Hbtm is bis(5-methyl-1-1,2,4-triazol-3-yl)methane, has quasi-discrete pores that can induce conformational changes in the flexible guest molecules, weakening 1,3-butadiene adsorption through a large bending energy penalty. In a breakthrough operation at ambient temperature and pressure, this guest conformation-controlling adsorbent eluted 1,3-butadiene first, then butane, butene, and isobutene. Thus, 1,3-butadiene can be efficiently purified (≥99.5%) while avoiding high-temperature conditions that can lead to its undesirable polymerization.
传统吸附剂优先吸附小分子、高极性和不饱和的 1,3-丁二烯分子,而必须将其与其他 C 烃类分离。我们通过单晶 X 射线衍射和计算模拟表明,亲水性金属有机骨架[Zn(btm)],其中 Hbtm 是双(5-甲基-1,2,4-三唑-3-基)甲烷,具有准离散的孔,可诱导柔性客体分子发生构象变化,通过大的弯曲能罚削弱 1,3-丁二烯的吸附。在环境温度和压力下的突破操作中,这种控制客体构象的吸附剂首先洗脱 1,3-丁二烯,然后是丁烷、丁烯和异丁烯。因此,1,3-丁二烯可以在避免可能导致其不期望聚合的高温条件下进行高效纯化(≥99.5%)。