Deakin University, Carbon Nexus, Institute for Frontier Materials, Geelong, Australia.
Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156/83111, Iran.
Sci Rep. 2017 Jun 15;7(1):3560. doi: 10.1038/s41598-017-03890-8.
Scale-up manufacturing of engineered graphene-like nanomaterials to deliver the industry needs for development of high-performance polymer nanocomposites still remains a challenge. Herein, we introduce a quick and cost-effective approach to scalable production of functionalized graphite nanoplatelets using "kitchen blender" approach and Diels-Alder chemistry. We have shown that, in a solvent-free process and through a cycloaddition mechanism, maleic anhydride can be grafted onto the edge-localized electron rich active sites of graphite nanoplatelets (GNP) resulting from high collision force, called "graphite collision-induced activation". The mechanical impact was modelled by applying the point charge method using density functional theory (DFT). The functionalization of GNP with maleic anhydride (m-GNP) was characterized using various spectroscopy techniques. In the next step, we used a recyclable process to convert m-GNP to the highly-reactive GNP (f-GNP) which exhibits a strong affinity towards the epoxy polymer matrix. It was found that at a low content of f-GNP e.g., 0.5 wt%, significant enhancements of ~54% and ~65% in tensile and flexural strengths of epoxy nanocomposite can be achieved, respectively. It is believed that this new protocol for functionalization of graphene nanomaterials will pave the way for relatively simple industrial scale fabrication of high performance graphene based nanocomposites.
将工程石墨烯类纳米材料的规模化制造用于满足开发高性能聚合物纳米复合材料的行业需求仍然是一个挑战。在此,我们介绍了一种快速且经济高效的方法,可使用“厨房搅拌机”方法和 Diels-Alder 化学来规模化生产功能化石墨纳米薄片。我们已经表明,在无溶剂的过程中并通过加成反应机制,马来酸酐可以接枝到石墨纳米薄片(GNP)的边缘局部富电子活性位点上,这是由于高碰撞力引起的,称为“石墨碰撞诱导活化”。使用密度泛函理论(DFT)中的点电荷方法对机械冲击进行了建模。使用各种光谱技术对 GNP 进行马来酸酐功能化(m-GNP)进行了表征。在下一步中,我们使用可回收的工艺将 m-GNP 转化为高反应性的 GNP(f-GNP),它对环氧聚合物基质表现出强烈的亲和力。结果发现,在低含量的 f-GNP(例如 0.5wt%)下,环氧纳米复合材料的拉伸强度和弯曲强度分别可以提高约 54%和 65%。相信这种新的石墨烯纳米材料功能化方案将为相对简单的工业规模制造高性能基于石墨烯的纳米复合材料铺平道路。