Suppr超能文献

探究精子发生:一种用于小鼠顶体分类的数字策略。

Probing spermiogenesis: a digital strategy for mouse acrosome classification.

机构信息

Center for Complexity and Biosystems University of Milano, via Celoria 16, 20133, Milano, Italy.

Department of Physics, University of Milano, Via Celoria 16, 20133, Milano, Italy.

出版信息

Sci Rep. 2017 Jun 16;7(1):3748. doi: 10.1038/s41598-017-03867-7.

Abstract

Classification of morphological features in biological samples is usually performed by a trained eye but the increasing amount of available digital images calls for semi-automatic classification techniques. Here we explore this possibility in the context of acrosome morphological analysis during spermiogenesis. Our method combines feature extraction from three dimensional reconstruction of confocal images with principal component analysis and machine learning. The method could be particularly useful in cases where the amount of data does not allow for a direct inspection by trained eye.

摘要

生物样本形态特征的分类通常由经过训练的人眼完成,但可用的数字图像数量不断增加,这就需要半自动分类技术。在此,我们在精子发生过程中顶体形态分析的背景下探索了这种可能性。我们的方法将共聚焦图像三维重建的特征提取与主成分分析和机器学习相结合。在数据量不允许经过训练的人直接检查的情况下,该方法可能特别有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6443/5473909/c2dee2be4ecd/41598_2017_3867_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验