Grys Ben T, Lo Dara S, Sahin Nil, Kraus Oren Z, Morris Quaid, Boone Charles, Andrews Brenda J
Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
J Cell Biol. 2017 Jan 2;216(1):65-71. doi: 10.1083/jcb.201610026. Epub 2016 Dec 9.
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach.
随着高通量自动化显微镜技术的最新进展,对用于分析大规模基于图像的数据的有效计算策略的需求日益增加。为此,计算机视觉方法已应用于细胞分割和特征提取,而机器学习方法也已被开发出来,以辅助对从生物图像获取的数据进行表型分类和聚类。在这里,我们概述了用于生成和分类表型概况的常用计算机视觉和机器学习方法,突出了每种方法的一般生物学用途。