Suppr超能文献

用于表型分析的机器学习和计算机视觉方法。

Machine learning and computer vision approaches for phenotypic profiling.

作者信息

Grys Ben T, Lo Dara S, Sahin Nil, Kraus Oren Z, Morris Quaid, Boone Charles, Andrews Brenda J

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.

Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.

出版信息

J Cell Biol. 2017 Jan 2;216(1):65-71. doi: 10.1083/jcb.201610026. Epub 2016 Dec 9.

Abstract

With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach.

摘要

随着高通量自动化显微镜技术的最新进展,对用于分析大规模基于图像的数据的有效计算策略的需求日益增加。为此,计算机视觉方法已应用于细胞分割和特征提取,而机器学习方法也已被开发出来,以辅助对从生物图像获取的数据进行表型分类和聚类。在这里,我们概述了用于生成和分类表型概况的常用计算机视觉和机器学习方法,突出了每种方法的一般生物学用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6d3/5223612/4278529c4be5/JCB_201610026_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验