Suppr超能文献

基于异质网络的 HeteSim 分数预测长非编码 RNA-蛋白质相互作用。

Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks.

机构信息

School of Software, Central South University, Changsha, 410075, China.

School of Information Science and Engineering, Central South University, Changsha, 410083, China.

出版信息

Sci Rep. 2017 Jun 16;7(1):3664. doi: 10.1038/s41598-017-03986-1.

Abstract

Massive studies have indicated that long non-coding RNAs (lncRNAs) are critical for the regulation of cellular biological processes by binding with RNA-related proteins. However, only a few experimentally supported lncRNA-protein associations have been reported. Existing network-based methods are typically focused on intrinsic features of lncRNA and protein but ignore the information implicit in the topologies of biological networks associated with lncRNAs. Considering the limitations in previous methods, we propose PLPIHS, an effective computational method for Predicting lncRNA-Protein Interactions using HeteSim Scores. PLPIHS uses the HeteSim measure to calculate the relatedness score for each lncRNA-protein pair in the heterogeneous network, which consists of lncRNA-lncRNA similarity network, lncRNA-protein association network and protein-protein interaction network. An SVM classifier to predict lncRNA-protein interactions is built with the HeteSim scores. The results show that PLPIHS performs significantly better than the existing state-of-the-art approaches and achieves an AUC score of 0.97 in the leave-one-out validation test. We also compare the performances of networks with different connectivity density and find that PLPIHS performs well across all the networks. Furthermore, we use the proposed method to identify the related proteins for lncRNA MALAT1. Highly-ranked proteins are verified by the biological studies and demonstrate the effectiveness of our method.

摘要

大量研究表明,长非编码 RNA(lncRNA)通过与 RNA 相关蛋白结合,对细胞生物过程的调控起着至关重要的作用。然而,目前仅有少数经过实验验证的 lncRNA-蛋白相互作用被报道。现有的基于网络的方法通常侧重于 lncRNA 和蛋白的内在特征,但忽略了与 lncRNA 相关的生物网络拓扑结构中隐含的信息。鉴于先前方法的局限性,我们提出了 PLPIHS,这是一种使用 HeteSim 得分预测 lncRNA-蛋白相互作用的有效计算方法。PLPIHS 使用 HeteSim 度量来计算异构网络中每个 lncRNA-蛋白对的相关性得分,该网络由 lncRNA-lncRNA 相似性网络、lncRNA-蛋白关联网络和蛋白-蛋白相互作用网络组成。然后,使用 HeteSim 得分构建 SVM 分类器来预测 lncRNA-蛋白相互作用。结果表明,PLPIHS 的性能明显优于现有的最先进方法,在留一验证测试中 AUC 得分为 0.97。我们还比较了不同连通密度的网络的性能,发现 PLPIHS 在所有网络中都表现良好。此外,我们使用所提出的方法来识别 lncRNA MALAT1 的相关蛋白。高排名的蛋白通过生物学研究得到了验证,证明了我们方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099b/5473862/729075e13595/41598_2017_3986_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验