Suppr超能文献

工作膜系统中的反离子迁移数和膜电位。

Counter-ion transport number and membrane potential in working membrane systems.

机构信息

Department of Engineering, Aarhus University, Hangoevej 2, 8200 Aarhus N, Denmark.

Department of Engineering, Aarhus University, Hangoevej 2, 8200 Aarhus N, Denmark.

出版信息

J Colloid Interface Sci. 2017 Oct 15;504:800-813. doi: 10.1016/j.jcis.2017.06.010. Epub 2017 Jun 8.

Abstract

In this work we use the general space-charge (SC) theory for a combined transport model of fluid and ion through cylindrical nanopores to derive equations for the membrane potential and counter-ion transport numbers. We discuss this approach for ion exchange membranes assuming aqueous domains as interconnected network of cylindrical pores. The transport number calculations from the SC theory are compared with the corresponding ones from the uniform potential (UP) and Teorell-Meyer-Sievers (TMS) models in the case of both zero and non-zero concentration gradient across the membrane and with an applied current density. By using this approach we suggest the optimal conditions for performing membrane potential experiments (i.e. choice of electrolyte and concentration difference) depending on an easily accessible membrane property, namely the volumetric charge density. We also theoretically describe a novel dynamic method to determine in a single experiment the membrane potential and membrane conductivity. To exemplify the use of the dynamic method we report the calculations based on typical operating conditions of the reverse electrodialysis process. The numerical results are presented in terms of the electrical potential difference versus the average pore radius and charge density. The resulting map is a useful tool for a rational design of an effective membrane morphology for a specific electrochemical application.

摘要

在这项工作中,我们使用通用空间电荷(SC)理论来推导通过圆柱形纳米孔的流体和离子的组合输运模型的膜电位和抗衡离子迁移数方程。我们假设水相为圆柱形孔的相互连接网络,讨论了这种用于离子交换膜的方法。在膜两侧零浓度梯度和非零浓度梯度以及施加电流密度的情况下,将 SC 理论的迁移数计算与均匀电位(UP)和 Teorell-Meyer-Sievers(TMS)模型的相应迁移数进行了比较。通过使用这种方法,我们根据易于获得的膜性质(即体积电荷密度),提出了进行膜电位实验的最佳条件(即电解质和浓度差的选择)。我们还从理论上描述了一种新的动态方法,可在单次实验中确定膜电位和膜电导率。为了举例说明动态方法的使用,我们报告了基于反向电渗析过程典型操作条件的计算结果。数值结果以电位移与平均孔径和电荷密度的关系表示。所得图谱是针对特定电化学应用设计有效膜形态的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验