Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil.
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, CEP 99709-910 Erechim, RS, Brazil.
Biochim Biophys Acta Mol Basis Dis. 2017 Sep;1863(9):2192-2201. doi: 10.1016/j.bbadis.2017.06.007. Epub 2017 Jun 15.
Hydrogen sulfide (sulfide) accumulates at high levels in brain of patients with ethylmalonic encephalopathy (EE). In the present study, we evaluated whether sulfide could disturb energy and redox homeostasis, and induce mitochondrial permeability transition (mPT) pore opening in rat brain aiming to better clarify the neuropathophysiology of EE. Sulfide decreased the activities of citrate synthase and aconitase in rat cerebral cortex mitochondria, and of creatine kinase (CK) in rat cerebral cortex, striatum and hippocampus supernatants. Glutathione prevented sulfide-induced CK activity decrease in the cerebral cortex. Sulfide also diminished mitochondrial respiration in cerebral cortex homogenates, and dissipated mitochondrial membrane potential (ΔΨm) and induced swelling in the presence of calcium in brain mitochondria. Alterations in ΔΨm and swelling caused by sulfide were prevented by the combination of ADP and cyclosporine A, and by ruthenium red, indicating the involvement of mPT in these effects. Furthermore, sulfide increased the levels of malondialdehyde in cerebral cortex supernatants, which was prevented by resveratrol and attenuated by glutathione, and of thiol groups in a medium devoid of brain samples. Finally, we verified that sulfide did not alter cell viability and DCFH oxidation in cerebral cortex slices, primary cortical astrocyte cultures and SH-SY5Y cells. Our data provide evidence that bioenergetics disturbance and lipid peroxidation along with mPT pore opening are involved in the pathophysiology of brain damage observed in EE.
硫化氢(硫化物)在乙基丙二酸脑病(EE)患者的大脑中积累到高水平。在本研究中,我们评估了硫化物是否可以扰乱能量和氧化还原稳态,并诱导大鼠脑线粒体通透性转换(mPT)孔开放,旨在更好地阐明 EE 的神经发病机制。硫化物降低了大鼠大脑皮质线粒体中的柠檬酸合酶和乌头酸酶以及大鼠大脑皮质、纹状体和海马上清液中的肌酸激酶(CK)的活性。谷胱甘肽可防止硫化物引起的大脑皮质 CK 活性下降。硫化物还降低了大脑皮质匀浆中的线粒体呼吸作用,并在线粒体存在钙的情况下耗散线粒体膜电位(ΔΨm)并诱导脑线粒体肿胀。ADP 和环孢菌素 A 的组合以及钌红可防止由硫化物引起的 ΔΨm 和肿胀的改变,表明 mPT 参与了这些作用。此外,硫化物增加了大脑皮质上清液中丙二醛的水平,而这一水平可被白藜芦醇预防和谷胱甘肽减弱,同时也降低了缺乏脑组织样本的培养基中硫醇基团的水平。最后,我们证实硫化物不会改变大脑皮质切片、原代皮质星形胶质细胞培养物和 SH-SY5Y 细胞中的细胞活力和 DCFH 氧化。我们的数据提供了证据,表明生物能量障碍、脂质过氧化作用以及 mPT 孔开放参与了 EE 中观察到的脑损伤的病理生理学。