Glänzel Nícolas Manzke, da Rosa-Junior Nevton Teixeira, Signori Marian F, de Andrade Silveira Josyane, Pinheiro Camila Vieira, Marcuzzo Manuela Bianchin, Campos-Carraro Cristina, da Rosa Araujo Alex Sander, Schiöth Helgi B, Wajner Moacir, Leipnitz Guilhian
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.
Metab Brain Dis. 2024 Dec 20;40(1):73. doi: 10.1007/s11011-024-01510-9.
Sulfite oxidase deficiencies, either caused by deficiency of the apoenzyme or the molybdenum cofactor, and ethylmalonic encephalopathy are inherited disorders that impact sulfur metabolism. These patients present with severe neurodeterioration accompanied by cerebral cortex and cerebellum abnormalities, and high thiosulfate levels in plasma and tissues, including the brain. We aimed to clarify the mechanisms of such abnormalities, so we assessed the ex vivo effects of thiosulfate administration on energetic status and oxidative stress markers in cortical and cerebellar tissues of newborn rats. Thiosulfate (0.5 µmol/g) or PBS (vehicle) was injected into the fourth ventricle of rat pups. Thirty minutes after the injection, animals were euthanized and the brain structures were utilized for the experiments. Our data showed that thiosulfate decreased the reduced glutathione (GSH) concentrations, and superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities in the cortical structure. Thiosulfate also increased DCFH oxidation, hydrogen peroxide generation and glutathione reductase activity. In the cerebellum, thiosulfate reduced SOD and glutathione peroxidase activities but increased GST and CAT activities as well as DCFH oxidation. Regarding energy metabolism, thiosulfate specifically decreased complex IV activity in the cortex, whereas it increased cerebellar complex I and creatine kinase activities, indicating bioenergetic disturbances. The results suggest that the accumulation of thiosulfate causing redox disruption and bioenergetic alterations has a prominent role in the pathogenesis of sulfur metabolism deficiencies.
亚硫酸盐氧化酶缺乏症,无论是由脱辅基酶缺乏还是钼辅因子缺乏引起,以及乙基丙二酸脑病,都是影响硫代谢的遗传性疾病。这些患者表现出严重的神经退化,并伴有大脑皮层和小脑异常,以及血浆和包括大脑在内的组织中硫代硫酸盐水平升高。我们旨在阐明此类异常的机制,因此我们评估了硫代硫酸盐给药对新生大鼠皮质和小脑组织能量状态和氧化应激标志物的体外影响。将硫代硫酸盐(0.5 μmol/g)或PBS(溶剂)注入幼鼠的第四脑室。注射后30分钟,对动物实施安乐死,并将脑结构用于实验。我们的数据表明,硫代硫酸盐降低了皮质结构中还原型谷胱甘肽(GSH)的浓度,以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽S-转移酶(GST)活性。硫代硫酸盐还增加了二氯荧光素(DCFH)氧化、过氧化氢生成和谷胱甘肽还原酶活性。在小脑中,硫代硫酸盐降低了SOD和谷胱甘肽过氧化物酶活性,但增加了GST和CAT活性以及DCFH氧化。关于能量代谢,硫代硫酸盐特异性降低了皮质中的复合物IV活性,而增加了小脑复合物I和肌酸激酶活性,表明存在生物能量紊乱。结果表明,硫代硫酸盐的积累导致氧化还原破坏和生物能量改变,在硫代谢缺陷的发病机制中起重要作用。