Begik Oguzhan, Oyken Merve, Cinkilli Alican Tuna, Can Tolga, Erson-Bensan Ayse Elif
Department of Biological Sciences, M.E.T.U., Ankara, 06800, Turkey.
Department of Computer Engineering, M.E.T.U., Ankara, 06800, Turkey; Cancer Systems Biology Laboratory (CanSyL), M.E.T.U., Ankara, 06800, Turkey.
Neoplasia. 2017 Jul;19(7):574-582. doi: 10.1016/j.neo.2017.04.008. Epub 2017 Jun 15.
Certain aspects of diagnosis, prognosis, and treatment of cancer patients are still important challenges to be addressed. Therefore, we propose a pipeline to uncover patterns of alternative polyadenylation (APA), a hidden complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways. Here, we analyzed expression data for 1045 cancer patients and found a significant shift in usage of poly(A) signals in common tumor types (breast, colon, lung, prostate, gastric, and ovarian) compared to normal tissues. Using machine-learning techniques, we further defined specific subsets of APA events to efficiently classify cancer types. Furthermore, APA patterns were associated with altered protein levels in patients, revealed by antibody-based profiling data, suggesting functional significance. Overall, our study offers a computational approach for use of APA in novel gene discovery and classification in common tumor types, with important implications in basic research, biomarker discovery, and precision medicine approaches.
癌症患者的诊断、预后和治疗的某些方面仍然是有待解决的重要挑战。因此,我们提出了一个流程来揭示可变聚腺苷酸化(APA)模式,这是癌症转录组中的一个隐藏复杂性,以进一步加快发现新型癌症基因和通路的努力。在这里,我们分析了1045名癌症患者的表达数据,发现与正常组织相比,常见肿瘤类型(乳腺癌、结肠癌、肺癌、前列腺癌、胃癌和卵巢癌)中聚(A)信号的使用存在显著变化。使用机器学习技术,我们进一步定义了APA事件的特定子集,以有效地对癌症类型进行分类。此外,基于抗体的分析数据显示,APA模式与患者蛋白质水平的改变有关,表明其具有功能意义。总体而言,我们的研究提供了一种计算方法,用于在常见肿瘤类型的新型基因发现和分类中使用APA,对基础研究、生物标志物发现和精准医学方法具有重要意义。