Suppr超能文献

肿瘤学中的监督式机器学习:临床医生指南

Supervised Machine Learning in Oncology: A Clinician's Guide.

作者信息

Murali Nikitha, Kucukkaya Ahmet, Petukhova Alexandra, Onofrey John, Chapiro Julius

机构信息

Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.

Department of Urology, Yale University School of Medicine, New Haven, Connecticut.

出版信息

Dig Dis Interv. 2020 Mar;4(1):73-81. doi: 10.1055/s-0040-1705097.

Abstract

The widespread adoption of electronic health records has resulted in an abundance of imaging and clinical information. New data-processing technologies have the potential to revolutionize the practice of medicine by deriving clinically meaningful insights from large-volume data. Among those techniques is supervised machine learning, the study of computer algorithms that use self-improving models that learn from labeled data to solve problems. One clinical area of application for supervised machine learning is within oncology, where machine learning has been used for cancer diagnosis, staging, and prognostication. This review describes a framework to aid clinicians in understanding and critically evaluating studies applying supervised machine learning methods. Additionally, we describe current studies applying supervised machine learning techniques to the diagnosis, prognostication, and treatment of cancer, with a focus on gastroenterological cancers and other related pathologies.

摘要

电子健康记录的广泛采用产生了大量的影像和临床信息。新的数据处理技术有潜力通过从大量数据中获取具有临床意义的见解来彻底改变医学实践。这些技术中包括监督式机器学习,即研究使用从标记数据中学习以解决问题的自我改进模型的计算机算法。监督式机器学习的一个临床应用领域是肿瘤学,机器学习已在其中用于癌症诊断、分期和预后评估。本综述描述了一个框架,以帮助临床医生理解和批判性地评估应用监督式机器学习方法的研究。此外,我们描述了当前将监督式机器学习技术应用于癌症诊断、预后评估和治疗的研究,重点关注胃肠癌和其他相关病理情况。

相似文献

7
Introduction to supervised machine learning in clinical epidemiology.临床流行病学中的监督式机器学习简介。
Ann Clin Epidemiol. 2022 Jul 1;4(3):63-71. doi: 10.37737/ace.22009. eCollection 2022.
8
Machine Learning in oncology: A clinical appraisal.机器学习在肿瘤学中的应用:临床评价。
Cancer Lett. 2020 Jul 1;481:55-62. doi: 10.1016/j.canlet.2020.03.032. Epub 2020 Apr 3.

引用本文的文献

6
Canine and murine models of osteosarcoma.犬和鼠骨肉瘤模型。
Vet Pathol. 2022 May;59(3):399-414. doi: 10.1177/03009858221083038. Epub 2022 Mar 26.

本文引用的文献

7
Prediction of fatty liver disease using machine learning algorithms.使用机器学习算法预测脂肪肝疾病。
Comput Methods Programs Biomed. 2019 Mar;170:23-29. doi: 10.1016/j.cmpb.2018.12.032. Epub 2018 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验