Suppr超能文献

肿瘤学中的监督式机器学习:临床医生指南

Supervised Machine Learning in Oncology: A Clinician's Guide.

作者信息

Murali Nikitha, Kucukkaya Ahmet, Petukhova Alexandra, Onofrey John, Chapiro Julius

机构信息

Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.

Department of Urology, Yale University School of Medicine, New Haven, Connecticut.

出版信息

Dig Dis Interv. 2020 Mar;4(1):73-81. doi: 10.1055/s-0040-1705097.

Abstract

The widespread adoption of electronic health records has resulted in an abundance of imaging and clinical information. New data-processing technologies have the potential to revolutionize the practice of medicine by deriving clinically meaningful insights from large-volume data. Among those techniques is supervised machine learning, the study of computer algorithms that use self-improving models that learn from labeled data to solve problems. One clinical area of application for supervised machine learning is within oncology, where machine learning has been used for cancer diagnosis, staging, and prognostication. This review describes a framework to aid clinicians in understanding and critically evaluating studies applying supervised machine learning methods. Additionally, we describe current studies applying supervised machine learning techniques to the diagnosis, prognostication, and treatment of cancer, with a focus on gastroenterological cancers and other related pathologies.

摘要

电子健康记录的广泛采用产生了大量的影像和临床信息。新的数据处理技术有潜力通过从大量数据中获取具有临床意义的见解来彻底改变医学实践。这些技术中包括监督式机器学习,即研究使用从标记数据中学习以解决问题的自我改进模型的计算机算法。监督式机器学习的一个临床应用领域是肿瘤学,机器学习已在其中用于癌症诊断、分期和预后评估。本综述描述了一个框架,以帮助临床医生理解和批判性地评估应用监督式机器学习方法的研究。此外,我们描述了当前将监督式机器学习技术应用于癌症诊断、预后评估和治疗的研究,重点关注胃肠癌和其他相关病理情况。

相似文献

1
Supervised Machine Learning in Oncology: A Clinician's Guide.
Dig Dis Interv. 2020 Mar;4(1):73-81. doi: 10.1055/s-0040-1705097.
2
Artificial Intelligence and Machine Learning: What You Always Wanted to Know but Were Afraid to Ask.
Gastro Hep Adv. 2022 Feb 3;1(1):70-78. doi: 10.1016/j.gastha.2021.11.001. eCollection 2022.
3
A Clinician's Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies.
Transl Vis Sci Technol. 2020 Feb 12;9(2):7. doi: 10.1167/tvst.9.2.7.
4
Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective.
Int J Radiat Oncol Biol Phys. 2015 Dec 1;93(5):1127-35. doi: 10.1016/j.ijrobp.2015.07.2286. Epub 2015 Nov 11.
5
Machine Learning in Oncology: What Should Clinicians Know?
JCO Clin Cancer Inform. 2020 Sep;4:799-810. doi: 10.1200/CCI.20.00049.
6
Comparing different supervised machine learning algorithms for disease prediction.
BMC Med Inform Decis Mak. 2019 Dec 21;19(1):281. doi: 10.1186/s12911-019-1004-8.
7
Introduction to supervised machine learning in clinical epidemiology.
Ann Clin Epidemiol. 2022 Jul 1;4(3):63-71. doi: 10.37737/ace.22009. eCollection 2022.
8
Machine Learning in oncology: A clinical appraisal.
Cancer Lett. 2020 Jul 1;481:55-62. doi: 10.1016/j.canlet.2020.03.032. Epub 2020 Apr 3.
9
Artificial intelligence in stroke imaging: Current and future perspectives.
Clin Imaging. 2021 Jan;69:246-254. doi: 10.1016/j.clinimag.2020.09.005. Epub 2020 Sep 21.
10
A semi-supervised learning based method: Laplacian support vector machine used in diabetes disease diagnosis.
Interdiscip Sci. 2009 Jun;1(2):151-5. doi: 10.1007/s12539-009-0016-2. Epub 2009 May 28.

引用本文的文献

2
A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound.
J Clin Med. 2023 May 30;12(11):3757. doi: 10.3390/jcm12113757.
3
Error Consistency for Machine Learning Evaluation and Validation with Application to Biomedical Diagnostics.
Diagnostics (Basel). 2023 Apr 1;13(7):1315. doi: 10.3390/diagnostics13071315.
4
Quantitative Software Analysis of Endoscopic Ultrasound Images of Pancreatic Cystic Lesions.
Diagnostics (Basel). 2022 Aug 30;12(9):2105. doi: 10.3390/diagnostics12092105.
6
Canine and murine models of osteosarcoma.
Vet Pathol. 2022 May;59(3):399-414. doi: 10.1177/03009858221083038. Epub 2022 Mar 26.
7
AI-Driven Image Analysis in Central Nervous System Tumors-Traditional Machine Learning, Deep Learning and Hybrid Models.
J Biotechnol Biomed. 2022;5(1):1-19. doi: 10.26502/jbb.2642-91280046. Epub 2022 Jan 10.
8
Use of Artificial Intelligence in Non-Oncologic Interventional Radiology: Current State and Future Directions.
Dig Dis Interv. 2021;5(4):331-337. doi: 10.1055/s-0041-1726300. Epub 2021 Jul 17.
9
Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer.
Eur J Nucl Med Mol Imaging. 2022 Jan;49(2):550-562. doi: 10.1007/s00259-021-05489-8. Epub 2021 Jul 30.

本文引用的文献

1
Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery.
J Gastrointest Surg. 2020 Aug;24(8):1843-1851. doi: 10.1007/s11605-019-04338-2. Epub 2019 Aug 5.
2
Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics.
Eur Radiol. 2019 Nov;29(11):6080-6088. doi: 10.1007/s00330-019-06193-w. Epub 2019 Apr 26.
3
Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
Eur Radiol. 2019 Jul;29(7):3338-3347. doi: 10.1007/s00330-019-06205-9. Epub 2019 Apr 23.
4
Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.
Nat Biomed Eng. 2018 Oct;2(10):741-748. doi: 10.1038/s41551-018-0301-3. Epub 2018 Oct 10.
6
Spotting malignancies from gastric endoscopic images using deep learning.
Surg Endosc. 2019 Nov;33(11):3790-3797. doi: 10.1007/s00464-019-06677-2. Epub 2019 Feb 4.
7
Prediction of fatty liver disease using machine learning algorithms.
Comput Methods Programs Biomed. 2019 Mar;170:23-29. doi: 10.1016/j.cmpb.2018.12.032. Epub 2018 Dec 29.
8
Machine Learning-based Development and Validation of a Scoring System for Screening High-Risk Esophageal Varices.
Clin Gastroenterol Hepatol. 2019 Aug;17(9):1894-1901.e1. doi: 10.1016/j.cgh.2019.01.025. Epub 2019 Jan 29.
9
Colonic MicroRNA Profiles, Identified by a Deep Learning Algorithm, That Predict Responses to Therapy of Patients With Acute Severe Ulcerative Colitis.
Clin Gastroenterol Hepatol. 2019 Apr;17(5):905-913. doi: 10.1016/j.cgh.2018.08.068. Epub 2018 Sep 14.
10
Endoscopic Diagnostic Support System for cT1b Colorectal Cancer Using Deep Learning.
Oncology. 2019;96(1):44-50. doi: 10.1159/000491636. Epub 2018 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验