Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
Angew Chem Int Ed Engl. 2017 Jul 10;56(29):8550-8554. doi: 10.1002/anie.201700389. Epub 2017 Jun 19.
Light-generated short-lived radial pairs have been suggested to play pivotal roles in cryptochromes and photolyases. Cryptochromes are very probably involved in magnetic compass sensing in migratory birds and the magnetic-field-dependent behavior of insects. We examined photo-generated transient states in the cryptochrome of Drosophila melanogaster and in the structurally related DNA-repair enzyme Escherichia coli DNA photolyase. Using pulsed EPR spectroscopy, the exchange and dipolar contributions to the electron spin-spin interaction were determined in a straightforward and direct way. With these parameters, radical-pair partners may be identified and the magnetoreceptor efficiency of cryptochromes can be evaluated. We present compelling evidence for an extended electron-transfer cascade in the Drosophila cryptochrome, and identified W394 as a key residue for flavin photoreduction and formation of a spin-correlated radical pair with a sufficient lifetime for high-sensitivity magnetic-field sensing.
光诱导的短寿命自由基对在隐花色素和光解酶中起着关键作用。隐花色素很可能参与候鸟的磁罗盘感应和昆虫对磁场的依赖行为。我们研究了果蝇隐花色素和结构相关的 DNA 修复酶大肠杆菌光解酶中的光生瞬态状态。使用脉冲 EPR 光谱,以简单直接的方式确定了电子自旋-自旋相互作用的交换和偶极贡献。通过这些参数,可以识别自由基对伙伴,并评估隐花色素的磁受体效率。我们提供了令人信服的证据,证明果蝇隐花色素中存在扩展的电子转移级联,并且鉴定出 W394 是黄素光还原和形成与高灵敏度磁场感应足够寿命的自旋相关自由基对的关键残基。