Pandey Ashutosh K, Dixit Updesh, Kholodovych Vlad, Comollo Thomas W, Pandey Virendra N
Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States.
Office of Advanced Research Computing, Rutgers University , Piscataway, New Jersey 08854, United States.
Biochemistry. 2017 Jul 11;56(27):3434-3442. doi: 10.1021/acs.biochem.7b00005. Epub 2017 Jun 28.
The heterodimeric human immunodeficiency virus type 1 reverse transcriptase is composed of p66 and p51 subunits. While in the p51 subunit, the connection domain is tucked in the polymerase cleft; it is effectively displaced from the cleft of the catalytically active p66 subunit. How is the connection domain relocated from the polymerase cleft of p66? Does the RNase H domain have any role in this process? To answer this question, we extended the C-terminal region of p51 by stepwise addition of N-terminal motifs of RNase H domain to generate p54, p57, p60, and p63 derivatives. We found all of the C-terminal extended derivatives of p51 assume open conformation, bind to the template-primer, and catalyze the polymerase reaction. Glycerol gradient ultracentrifugation analysis showed that only p54 sedimented as a monomer, while other derivatives were in a homodimeric conformation. We proposed a model to explain the monomeric conformation of catalytically active p54 derivative carrying additional 21-residues long β1'-β2' motif from the RNase H domain. Our results indicate that the β1'-β2' motif of the RNase H domain may be responsible for displacing the connection domain from the polymerase cleft of putative monomeric p66. The unstable elongated p66 molecule may then readily dimerize with p51 to assume a stable dimeric conformation.
人免疫缺陷病毒1型逆转录酶是一种异源二聚体,由p66和p51亚基组成。在p51亚基中,连接结构域折叠在聚合酶裂隙中;而在具有催化活性的p66亚基的裂隙中,它实际上是移位的。连接结构域是如何从p66的聚合酶裂隙中重新定位的?核糖核酸酶H结构域在这个过程中起作用吗?为了回答这个问题,我们通过逐步添加核糖核酸酶H结构域的N端基序来扩展p51的C端区域,从而产生p54、p57、p60和p63衍生物。我们发现p51的所有C端延伸衍生物都呈现开放构象,能与模板引物结合并催化聚合酶反应。甘油梯度超速离心分析表明,只有p54以单体形式沉降,而其他衍生物则呈同源二聚体构象。我们提出了一个模型来解释携带来自核糖核酸酶H结构域的额外21个残基长的β1'-β2'基序的具有催化活性的p54衍生物的单体构象。我们的结果表明,核糖核酸酶H结构域的β1'-β2'基序可能负责将连接结构域从假定的单体p66的聚合酶裂隙中移位。然后,不稳定的延长型p66分子可能很容易与p51二聚化,以呈现稳定的二聚体构象。