Suppr超能文献

在V1区受损的猴子中,通过上丘,多巴胺神经元中出现视觉诱发的奖励期望信号。

Emergence of visually-evoked reward expectation signals in dopamine neurons via the superior colliculus in V1 lesioned monkeys.

作者信息

Takakuwa Norihiro, Kato Rikako, Redgrave Peter, Isa Tadashi

机构信息

Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.

Department of Physiological Sciences, SOKENDAI, Hayama, Japan.

出版信息

Elife. 2017 Jun 19;6:e24459. doi: 10.7554/eLife.24459.

Abstract

Responses of midbrain dopamine (DA) neurons reflecting expected reward from sensory cues are critical for reward-based associative learning. However, critical pathways by which reward-related visual information is relayed to DA neurons remain unclear. To address this question, we investigated Pavlovian conditioning in macaque monkeys with unilateral primary visual cortex (V1) lesions (an animal model of 'blindsight'). Anticipatory licking responses to obtain juice drops were elicited in response to visual conditioned stimuli (CS) in the affected visual field. Subsequent pharmacological inactivation of the superior colliculus (SC) suppressed the anticipatory licking. Concurrent single unit recordings indicated that DA responses reflecting the reward expectation could be recorded in the absence of V1, and that these responses were also suppressed by SC inactivation. These results indicate that the subcortical visual circuit can relay reward-predicting visual information to DA neurons and integrity of the SC is necessary for visually-elicited classically conditioned responses after V1 lesion.

摘要

中脑多巴胺(DA)神经元对来自感觉线索的预期奖励的反应对于基于奖励的联想学习至关重要。然而,奖励相关视觉信息传递到DA神经元的关键通路仍不清楚。为了解决这个问题,我们在患有单侧初级视觉皮层(V1)损伤(一种“盲视”动物模型)的猕猴中研究了经典条件反射。在受影响视野中,针对视觉条件刺激(CS)引发了预期舔舐反应以获取果汁滴。随后对上丘(SC)进行药理学失活抑制了预期舔舐。同时进行的单单元记录表明,在没有V1的情况下可以记录到反映奖励预期的DA反应,并且这些反应也被SC失活所抑制。这些结果表明,皮层下视觉回路可以将奖励预测视觉信息传递给DA神经元,并且SC的完整性对于V1损伤后视觉引发的经典条件反应是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a494/5529105/5e55391ed40b/elife-24459-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验