Soto Ingrid Dayana, Escobar Sindy, Mesa Monica
Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:525-532. doi: 10.1016/j.msec.2017.05.088. Epub 2017 May 14.
The interactions between Thermomyces lanuginosus lipase (TLL) and phenyl silica-based supports affect the immobilization mechanisms and their catalytic behavior. The modulation of phenyl groups density on the silica surface and porous characteristics were determined by TGA, FTIR, Si NMR and N adsorption porosimetry. The correlation of the affinity constant and maximum adsorption capacity with the lixiviation results allowed determine differences in the enzyme adsorption mechanism in function of the immobilization pH and phenyl groups density. In the support with low phenyl groups density, the adsorption of a higher amount of enzyme is promoted. However, the pore confinement and the microenvironment generate decrease expressed activity. This can be due to the stiffness and structural changes of the adsorbed enzymes, which were studied by following the thermal stability at 65°C, protein distribution, kinetic parameters and diffusion restrictions. The biocatalyst prepared on support with low density of phenyl groups at pH6.0, exhibits the best balance between expressed activity, thermal stability and immobilization efficiency. This due to homogeneous distribution of the enzyme in the support with phenyl groups, which increases the affinity of the enzyme by the substrate, even the diffusion restrictions decrease the Vmax. These results contribute to rationalize the effects of the immobilization conditions and supports type on its catalytic behavior.
嗜热栖热菌脂肪酶(TLL)与苯基硅基载体之间的相互作用会影响固定化机制及其催化行为。通过热重分析(TGA)、傅里叶变换红外光谱(FTIR)、硅核磁共振(Si NMR)和氮吸附孔隙率测定法来确定二氧化硅表面苯基密度的调节和多孔特性。亲和常数和最大吸附容量与浸出结果的相关性有助于确定酶吸附机制在固定化pH值和苯基密度作用下的差异。在苯基密度较低的载体中,会促进更多量酶的吸附。然而,孔限制和微环境会导致表达活性降低。这可能是由于吸附酶的刚性和结构变化,通过跟踪65°C下的热稳定性、蛋白质分布、动力学参数和扩散限制对其进行了研究。在pH6.0时在苯基密度低的载体上制备的生物催化剂在表达活性、热稳定性和固定化效率之间表现出最佳平衡。这是由于酶在含苯基的载体中均匀分布,这增加了酶与底物的亲和力,即使扩散限制降低了最大反应速度(Vmax)。这些结果有助于阐明固定化条件和载体类型对其催化行为的影响。