Jian Yulin, Huang Daoyu, Yan Jia, Lu Kun, Huang Ying, Wen Tailai, Zeng Tanyue, Zhong Shijie, Xie Qilong
College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing 400715, China.
Sensors (Basel). 2017 Jun 19;17(6):1434. doi: 10.3390/s17061434.
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
本文提出了一种名为基于量子行为粒子群优化(QPSO)的加权多核极限学习机(QWMK - ELM)的新型分类模型。使用两个不同的电子鼻(e - 鼻)数据集进行了实验验证。与现有的多核极限学习机(MK - ELM)算法不同,基核的组合系数被视为单隐层前馈神经网络(SLFNs)的外部参数。在使用复合核函数实现核极限学习机(KELM)之前,通过QPSO同时优化基核的组合系数、每个基核的模型参数以及正则化参数。利用四种常见的单核函数(高斯核、多项式核、Sigmoid核和小波核)构成不同的复合核函数。此外,还将该方法与其他现有的分类方法进行了比较:极限学习机(ELM)、核极限学习机(KELM)、k近邻(KNN)、支持向量机(SVM)、多层感知器(MLP)、径向基函数神经网络(RBFNN)和概率神经网络(PNN)。结果表明,所提出的QWMK - ELM在气体分类的精度和效率方面均优于上述方法。