Tesche Christian, De Cecco Carlo N, Schoepf U Joseph, Duguay Taylor M, Albrecht Moritz H, De Santis Domenico, Varga-Szemes Akos, Lesslie Virginia W, Ebersberger Ullrich, Bayer Richard R, Canstein Christian, Hoffmann Ellen, Allmendinger Thomas, Nance John W
Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29403, USA; Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Englschalkinger Strasse 77, 81925 Munich, Germany.
Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29403, USA.
Eur J Radiol. 2017 Jun;91:29-34. doi: 10.1016/j.ejrad.2017.03.011. Epub 2017 Mar 23.
To investigate the diagnostic accuracy of CT coronary artery calcium scoring (CACS) with tin pre-filtration (Sn100kVp) using iterative beam-hardening correction (IBHC) calcium material reconstruction compared to the standard 120kVp acquisition.
Third generation dual-source CT (DSCT) CACS with Sn100kVp acquisition allows significant dose reduction. However, the Sn100kVp spectrum is harder with lower contrast compared to 120kVp, resulting in lower calcium score values. Sn100kVp spectral correction using IBHC-based calcium material reconstruction may restore comparable calcium values.
Image data of 62 patients (56% male, age 63.9±9.2years) who underwent a clinically-indicated CACS acquisition using the standard 120kVp protocol and an additional Sn100kVp CACS scan as part of a research study were retrospectively analyzed. Datasets of the Sn100kVp scans were reconstructed using a dedicated spectral IBHC CACS reconstruction to restore the spectral response of 120kVp spectra. Agatston scores were derived from 120kVp and IBHC reconstructed Sn100kVp studies. Pearson's correlation coefficient was assessed and Agatston score categories and percentile-based risk categorization were compared.
Median Agatston scores derived from IBHC Sn100kVp scans and 120kVp acquisition were 31.7 and 34.1, respectively (p=0.057). Pearson's correlation coefficient showed excellent correlation between the acquisitions (r=0.99, p<0.0001). Agatston score categories and percentile-based cardiac risk categories showed excellent agreement (ĸ=1.00 and ĸ=0.99), resulting in a low cardiac risk reclassification of 1.6% with the use of IBHC CACS reconstruction. Image noise was 24.9±3.6HU in IBHC Sn100kVp and 17.1±3.9HU in 120kVp scans (p<0.0001). The dose-length-product was 13.2±3.4mGycm with IBHC Sn100kVp and 59.1±22.9mGycm with 120kVp scans (p<0.0001), resulting in a significantly lower effective radiation dose (0.19±0.07mSv vs. 0.83±0.33mSv, p<0.0001) for IBHC Sn100kVp scans.
Low voltage CACS with tin filtration using a dedicated IBHC CACS material reconstruction algorithm shows excellent correlation and agreement with the standard 120kVp acquisition regarding Agatston score and cardiac risk categorization, while radiation dose is significantly reduced by 75% to the level of a chest x-ray.
研究采用迭代束硬化校正(IBHC)钙物质重建的锡预滤波(Sn100kVp)CT冠状动脉钙化积分(CACS)与标准120kVp采集相比的诊断准确性。
采用Sn100kVp采集的第三代双源CT(DSCT)CACS可显著降低辐射剂量。然而,与120kVp相比,Sn100kVp的能谱更硬,对比度更低,导致钙化积分值更低。使用基于IBHC的钙物质重建对Sn100kVp能谱进行校正可能会恢复可比的钙值。
回顾性分析62例患者(56%为男性,年龄63.9±9.2岁)的图像数据,这些患者按照临床指征采用标准120kVp协议进行了CACS采集,并作为一项研究的一部分额外进行了Sn100kVp CACS扫描。使用专用的能谱IBHC CACS重建对Sn100kVp扫描的数据集进行重建,以恢复120kVp能谱的能谱响应。从120kVp和IBHC重建的Sn100kVp研究中得出阿加特斯顿积分。评估了Pearson相关系数,并比较了阿加特斯顿积分类别和基于百分位数的风险分类。
从IBHC Sn100kVp扫描和120kVp采集中得出的阿加特斯顿积分中位数分别为31.7和34.1(p=0.057)。Pearson相关系数显示两次采集之间具有极好的相关性(r=0.99,p<0.0001)。阿加特斯顿积分类别和基于百分位数的心源性风险类别显示出极好的一致性(ĸ=1.00和ĸ=0.99),使用IBHC CACS重建导致心源性风险重新分类率低至1.6%。IBHC Sn100kVp扫描中的图像噪声为24.9±3.6HU,120kVp扫描中的图像噪声为17.1±3.9HU(p<0.0001)。IBHC Sn100kVp扫描的剂量长度乘积为13.2±3.4mGycm,120kVp扫描的剂量长度乘积为59.1±22.9mGycm(p<0.0001),导致IBHC Sn100kVp扫描的有效辐射剂量显著更低(0.19±0.07mSv对0.83±0.33mSv,p<0.0001)。
采用专用的IBHC CACS物质重建算法进行锡滤波的低电压CACS在阿加特斯顿积分和心源性风险分类方面与标准120kVp采集具有极好的相关性和一致性,同时辐射剂量显著降低75%,降至胸部X线的水平。