Suppr超能文献

Clonal isolation of populations of gamma-glutamyl transpeptidase-positive and -negative cells from rat liver epithelial cells chemically transformed in vitro.

作者信息

Tsao M S, Grisham J W, Chou B B, Smith J D

出版信息

Cancer Res. 1985 Oct;45(10):5134-8.

PMID:2862991
Abstract

In a population of cultured rat liver epithelial cells transformed by 11 brief treatments with N-methyl-N'-nitro-N-nitrosoguanidine, 9% of the cells stained intensely for gamma-glutamyl transpeptidase (GGT). We have isolated from this phenotypically heterogeneous tumorigenic cell population 11 GGT-positive and 7 GGT-negative clonal subpopulations (from single cells) and have analyzed the ploidy and selected biochemical, histochemical, and growth properties of the cells in these clonal sublines. As compared to the GGT-negative strains and normal diploid rat liver epithelial cells, cells of the GGT-positive strains are larger in size, have greater DNA content, proliferate more slowly in culture, and have higher specific activities of NADH diaphorase, glucose-6-phosphate dehydrogenase, pyruvate kinase, and lactate dehydrogenase. The GGT-positive strains also show greater alteration and heterogeneity than do the GGT-negative strains in their ability to store glycogen and in their expression of lactate dehydrogenase isozymes. The results indicate that enzymatic changes commonly observed in "altered" hepatocytes in rat livers exposed to chemical carcinogens in vivo can also be produced in vitro in cultured hepatic epithelial cells by treatment with carcinogens. Moreover, treatment of a cell line with a chemical carcinogen generates a population of cells vastly heterogeneous in both their phenotypes and genotypes. Isolation of clonal subpopulations from the resulting cell line allows critical examination of the linkage and mechanistic relationship between tumorigenicity and many paratumorigenic phenotypes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验