Roderer Daniel, Glockshuber Rudi
Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland.
Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0211.
The cytolytic toxin cytolysin A (ClyA) from is probably one of the best-characterized examples of bacterial, α-pore-forming toxins (α-PFTs). Like other PFTs, ClyA exists in a soluble, monomeric form that assembles to an annular, homo-oligomeric pore complex upon contact with detergent or target membranes. Comparison of the three-dimensional structures of the 34 kDa monomer and the protomer in the context of the dodecameric pore complex revealed that ClyA undergoes one of the largest conformational transitions described for proteins so far, in which 55% of the residues change their position and 16% of the residues adopt a different secondary structure in the protomer. Studies on the assembly of ClyA revealed a unique mechanism that differs from the assembly mechanism of other PFTs. The rate-liming step of pore formation proved to be the unimolecular conversion of the monomer to an assembly-competent protomer, during which a molten globule-like off-pathway intermediate accumulates. The oligomerization of protomers to pore complexes is fast and follows a kinetic scheme in which mixtures of linear oligomers of different size are formed first, followed by very rapid and specific association of pairs of oligomers that can directly perform ring closure to the dodecameric pore complex.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
来自[具体来源未给出]的溶细胞毒素细胞溶素A(ClyA)可能是细菌α-成孔毒素(α-PFTs)中特征最明确的例子之一。与其他PFTs一样,ClyA以可溶的单体形式存在,在与去污剂或靶膜接触时组装成环状的同聚孔复合物。在十二聚体孔复合物的背景下比较34 kDa单体和原体的三维结构,发现ClyA经历了迄今为止蛋白质中描述的最大构象转变之一,其中55%的残基改变了位置,16%的残基在原体中采用了不同的二级结构。对ClyA组装的研究揭示了一种独特的机制,该机制不同于其他PFTs的组装机制。孔形成的限速步骤被证明是单体向具有组装能力的原体的单分子转化,在此过程中积累了一种类似熔球的非途径中间体。原体向孔复合物的寡聚化很快,遵循一种动力学方案,其中首先形成不同大小线性寡聚物的混合物,随后是非常快速和特异性的寡聚物对的缔合,这些寡聚物对可以直接进行环化形成十二聚体孔复合物。本文是主题为“膜孔:从结构与组装到医学与技术”的特刊的一部分。