Suppr超能文献

利用 GSK3 活性的拮抗作用促进中枢神经系统轴突再生。

Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity.

机构信息

Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany.

Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5454-E5463. doi: 10.1073/pnas.1621225114. Epub 2017 Jun 19.

Abstract

Implications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3 knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice. Phosphorylation of MAP1B and CRMP2 was expectedly increased in retinal ganglion cell (RGC) axons upon enhanced GSK3 activity, but, surprisingly, no GSK3-mediated CRMP2 inhibition was detected in sciatic nerves, thus revealing a fundamental difference between central and peripheral axons. Conversely, genetic or shRNA-mediated conditional KO/knockdown of GSK3β reduced inhibitory phosphorylation of CRMP2 in RGCs and improved optic nerve regeneration. Accordingly, GSK3β KO-mediated neurite growth promotion and myelin disinhibition were abrogated by CRMP2 inhibition and largely mimicked in WT neurons upon expression of constitutively active CRMP2 (CRMP2). These results underscore the prevalent requirement of active CRMP2 for optic nerve regeneration. Strikingly, expression of CRMP2 in GSK3 RGCs further boosted optic nerve regeneration, with axons reaching the optic chiasm within 3 wk. Thus, active GSK3 can also markedly promote axonal growth in central nerves if CRMP2 concurrently remains active. Similar to peripheral nerves, GSK3-mediated MAP1B phosphorylation/activation and the reduction of microtubule detyrosination contributed to this effect. Overall, these findings reconcile conflicting data on GSK3-mediated axon regeneration. In addition, the concept of complementary modulation of normally antagonistically targeted GSK3 substrates offers a therapeutically applicable approach to potentiate the regenerative outcome in the injured CNS.

摘要

GSK3 活性对轴突再生的影响通常不一致,如果不是有争议的话。据报道,GSK3 敲入小鼠中持续的 GSK3 活性通过增加 MAP1B 的磷酸化并同时减少微管去酪氨酸化来加速周围神经再生。相比之下,本研究表明,这些敲入小鼠的 lens 损伤刺激视神经再生明显受损。在增强的 GSK3 活性下,视网膜神经节细胞 (RGC) 轴突中的 MAP1B 和 CRMP2 的磷酸化预计会增加,但令人惊讶的是,坐骨神经中未检测到 GSK3 介导的 CRMP2 抑制,从而揭示了中枢和周围轴突之间的根本区别。相反,遗传或 shRNA 介导的条件性 KO/敲低 GSK3β 降低了 RGC 中 CRMP2 的抑制性磷酸化,并改善了视神经再生。相应地,CRMP2 抑制消除了 GSK3β KO 介导的突起生长促进和髓鞘抑制,并且在表达组成性激活的 CRMP2 (CRMP2) 时在 WT 神经元中很大程度上模拟了这种情况。这些结果强调了活跃的 CRMP2 对视神经再生的普遍需求。引人注目的是,CRMP2 在 GSK3 RGCs 中的表达进一步促进了视神经再生,轴突在 3 周内到达视神经交叉。因此,如果 CRMP2 同时保持活跃,活跃的 GSK3 也可以显著促进中枢神经系统中的轴突生长。与周围神经相似,GSK3 介导的 MAP1B 磷酸化/激活和微管去酪氨酸化的减少促成了这种效应。总的来说,这些发现调和了关于 GSK3 介导的轴突再生的相互矛盾的数据。此外,通常拮抗靶向的 GSK3 底物的互补调节概念为增强损伤 CNS 中的再生结果提供了一种治疗上可应用的方法。

相似文献

1
Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity.
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5454-E5463. doi: 10.1073/pnas.1621225114. Epub 2017 Jun 19.
2
GSK3-CRMP2 signaling mediates axonal regeneration induced by knockout.
Commun Biol. 2019 Aug 23;2:318. doi: 10.1038/s42003-019-0524-1. eCollection 2019.
3
Promotion of Functional Nerve Regeneration by Inhibition of Microtubule Detyrosination.
J Neurosci. 2016 Apr 6;36(14):3890-902. doi: 10.1523/JNEUROSCI.4486-15.2016.
6
Boosting Central Nervous System Axon Regeneration by Circumventing Limitations of Natural Cytokine Signaling.
Mol Ther. 2016 Oct;24(10):1712-1725. doi: 10.1038/mt.2016.102. Epub 2016 May 16.
8
Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve.
Cell Death Differ. 2015 Feb;22(2):323-35. doi: 10.1038/cdd.2014.147. Epub 2014 Sep 26.
10

引用本文的文献

1
Glycogen synthase kinase 3β: a key player in progressive chronic kidney disease.
Clin Sci (Lond). 2025 Jun 17;139(12):605-25. doi: 10.1042/CS20245219.
3
Unlocking the potential for optic nerve regeneration over long distances: a multi-therapeutic intervention.
Front Neurol. 2025 Jan 9;15:1526973. doi: 10.3389/fneur.2024.1526973. eCollection 2024.
4
Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury.
ASN Neuro. 2025;17(1):2440299. doi: 10.1080/17590914.2024.2440299. Epub 2025 Jan 16.
5
GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology.
JCI Insight. 2024 Aug 8;9(15):e178050. doi: 10.1172/jci.insight.178050.
6
Inhibition of tubulin detyrosination: a novel strategy to promote central nervous system regeneration.
Neural Regen Res. 2024 Dec 1;19(12):2557-2558. doi: 10.4103/NRR.NRR-D-23-02015. Epub 2024 Apr 1.
7
The role of kinases in peripheral nerve regeneration: mechanisms and implications.
Front Neurol. 2024 Apr 16;15:1340845. doi: 10.3389/fneur.2024.1340845. eCollection 2024.
8
Nfe2l3 promotes neuroprotection and long-distance axon regeneration after injury in vivo.
Exp Neurol. 2024 May;375:114741. doi: 10.1016/j.expneurol.2024.114741. Epub 2024 Feb 21.
9
GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology.
bioRxiv. 2023 Dec 15:2023.12.14.571757. doi: 10.1101/2023.12.14.571757.
10
Glycogen synthase kinase 3 signaling in neural regeneration in vivo.
J Mol Cell Biol. 2024 Apr 10;15(12). doi: 10.1093/jmcb/mjad075.

本文引用的文献

1
Boosting Central Nervous System Axon Regeneration by Circumventing Limitations of Natural Cytokine Signaling.
Mol Ther. 2016 Oct;24(10):1712-1725. doi: 10.1038/mt.2016.102. Epub 2016 May 16.
2
Promotion of Functional Nerve Regeneration by Inhibition of Microtubule Detyrosination.
J Neurosci. 2016 Apr 6;36(14):3890-902. doi: 10.1523/JNEUROSCI.4486-15.2016.
5
Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses.
Exp Neurol. 2016 Mar;277:283-295. doi: 10.1016/j.expneurol.2016.01.015. Epub 2016 Jan 18.
6
The GSK3-MAP1B pathway controls neurite branching and microtubule dynamics.
Mol Cell Neurosci. 2016 Apr;72:9-21. doi: 10.1016/j.mcn.2016.01.001. Epub 2016 Jan 8.
7
Role of GSK3 in peripheral nerve regeneration.
Neural Regen Res. 2015 Oct;10(10):1602-3. doi: 10.4103/1673-5374.167753.
8
Sustained GSK3 activity markedly facilitates nerve regeneration.
Nat Commun. 2014 Jul 31;5:4561. doi: 10.1038/ncomms5561.
10
Signaling regulations of neuronal regenerative ability.
Curr Opin Neurobiol. 2014 Aug;27:135-42. doi: 10.1016/j.conb.2014.03.007. Epub 2014 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验