Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany.
Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5454-E5463. doi: 10.1073/pnas.1621225114. Epub 2017 Jun 19.
Implications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3 knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice. Phosphorylation of MAP1B and CRMP2 was expectedly increased in retinal ganglion cell (RGC) axons upon enhanced GSK3 activity, but, surprisingly, no GSK3-mediated CRMP2 inhibition was detected in sciatic nerves, thus revealing a fundamental difference between central and peripheral axons. Conversely, genetic or shRNA-mediated conditional KO/knockdown of GSK3β reduced inhibitory phosphorylation of CRMP2 in RGCs and improved optic nerve regeneration. Accordingly, GSK3β KO-mediated neurite growth promotion and myelin disinhibition were abrogated by CRMP2 inhibition and largely mimicked in WT neurons upon expression of constitutively active CRMP2 (CRMP2). These results underscore the prevalent requirement of active CRMP2 for optic nerve regeneration. Strikingly, expression of CRMP2 in GSK3 RGCs further boosted optic nerve regeneration, with axons reaching the optic chiasm within 3 wk. Thus, active GSK3 can also markedly promote axonal growth in central nerves if CRMP2 concurrently remains active. Similar to peripheral nerves, GSK3-mediated MAP1B phosphorylation/activation and the reduction of microtubule detyrosination contributed to this effect. Overall, these findings reconcile conflicting data on GSK3-mediated axon regeneration. In addition, the concept of complementary modulation of normally antagonistically targeted GSK3 substrates offers a therapeutically applicable approach to potentiate the regenerative outcome in the injured CNS.
GSK3 活性对轴突再生的影响通常不一致,如果不是有争议的话。据报道,GSK3 敲入小鼠中持续的 GSK3 活性通过增加 MAP1B 的磷酸化并同时减少微管去酪氨酸化来加速周围神经再生。相比之下,本研究表明,这些敲入小鼠的 lens 损伤刺激视神经再生明显受损。在增强的 GSK3 活性下,视网膜神经节细胞 (RGC) 轴突中的 MAP1B 和 CRMP2 的磷酸化预计会增加,但令人惊讶的是,坐骨神经中未检测到 GSK3 介导的 CRMP2 抑制,从而揭示了中枢和周围轴突之间的根本区别。相反,遗传或 shRNA 介导的条件性 KO/敲低 GSK3β 降低了 RGC 中 CRMP2 的抑制性磷酸化,并改善了视神经再生。相应地,CRMP2 抑制消除了 GSK3β KO 介导的突起生长促进和髓鞘抑制,并且在表达组成性激活的 CRMP2 (CRMP2) 时在 WT 神经元中很大程度上模拟了这种情况。这些结果强调了活跃的 CRMP2 对视神经再生的普遍需求。引人注目的是,CRMP2 在 GSK3 RGCs 中的表达进一步促进了视神经再生,轴突在 3 周内到达视神经交叉。因此,如果 CRMP2 同时保持活跃,活跃的 GSK3 也可以显著促进中枢神经系统中的轴突生长。与周围神经相似,GSK3 介导的 MAP1B 磷酸化/激活和微管去酪氨酸化的减少促成了这种效应。总的来说,这些发现调和了关于 GSK3 介导的轴突再生的相互矛盾的数据。此外,通常拮抗靶向的 GSK3 底物的互补调节概念为增强损伤 CNS 中的再生结果提供了一种治疗上可应用的方法。