Suppr超能文献

一种基于量子行为粒子群优化的群优化遗传算法。

A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

作者信息

Sun Tao, Xu Ming-Hai

机构信息

College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China.

Shengli College, China University of Petroleum, Dongying, Shandong 257000, China.

出版信息

Comput Intell Neurosci. 2017;2017:2782679. doi: 10.1155/2017/2782679. Epub 2017 May 25.

Abstract

Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

摘要

量子行为粒子群优化(QPSO)算法是传统粒子群优化(PSO)算法的一个变体。最初为连续搜索空间开发的QPSO在搜索能力方面优于传统PSO。本文分析了影响QPSO搜索能力的主要因素,并通过引入拒绝区域将粒子运动公式转换为变异条件,从而提出了一种新的二进制算法,称为群优化遗传算法(SOGA),因为它在形式上比PSO更类似于遗传算法(GA)。SOGA具有与GA相同的交叉和变异算子,但不需要设置交叉和变异概率,因此需要控制的参数更少。该算法在二进制搜索空间中使用几个非线性高维函数进行了测试,并将结果与BPSO、BQPSO和GA的结果进行了比较。实验结果表明,SOGA在求解精度和收敛性方面明显优于其他三种算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a97f/5463199/f111c95b1412/CIN2017-2782679.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验