Yang Zhen-Lun, Wu Angus, Min Hua-Qing
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China ; School of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483, China.
Department of Electronic Engineering, City University of Hong Kong, Tat Chee Ave, Hong Kong.
Comput Intell Neurosci. 2015;2015:326431. doi: 10.1155/2015/326431. Epub 2015 May 10.
An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.
本文提出并实证研究了一种用于无约束优化的带有精英繁殖的改进量子行为粒子群优化算法(EB-QPSO)。在EB-QPSO中,新颖的精英繁殖策略作用于群体中的精英个体,以逃离可能的局部最优,并引导群体进行更高效的搜索。在EB-QPSO的迭代优化过程中,当满足条件时,每个粒子的个体最优和群体的全局最优被用于通过转座子算子生成新的多样化个体。选择具有更好适应度的新生成个体作为新的个体最优粒子和全局最优粒子,以引导群体进一步探索解决方案。对一组十二个基准函数进行了全面的模拟研究。与五种最先进的量子行为粒子群优化算法相比,所提出的EB-QPSO在所有基准函数中,在更好的全局搜索能力和更快的收敛速度方面表现得更具竞争力。