Böhmer Christine
UMR 7179 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier CP-55, Paris, France.
Zoological Lett. 2017 Jun 13;3:8. doi: 10.1186/s40851-017-0069-4. eCollection 2017.
The importance of the cervical vertebrae as part of the skull-neck system in facilitating the success and diversity of tetrapods is clear. The reconstruction of its evolution, however, is problematic because of the variation in the number of vertebrae, making it difficult to identify homologous elements. Quantification of the morphological differentiation in the neck of diverse archosaurs established homologous units of vertebrae (i.e. modules) resulting from gene expression patterns within the cervical vertebral column. The present study aims to investigate the modularity of the cervical vertebral column in the mouse and to reveal the genetic patterns and changes underlying the evolution of the neck of modern mammals and their extinct relatives. In contrast to modern mammals, non-mammalian synapsids are characterized by a variable cervical count, the presence of free cervical ribs and the presence of a separate CV1 centrum. How might these evolutionary modifications be associated with changes in the code?
In combination with up-to-date information on cervical gene expression including description of the vertebral phenotype of knock-out mutants, the 3D landmark-based geometric morphometric approach demonstrates a correlation between code and vertebral morphology in the mouse. There is evidence that the modularity of the neck of the mouse had already been established in the last common ancestor of mammals, but differed from that of non-mammalian synapsids. The differences that likely occurred during the evolution of synapsids include an anterior shift in expression in relation to the reduction of cervical ribs and an anterior shift in expression linked to the development of the highly differentiated atlas-axis complex, whereas the remaining genes may have displayed a pattern similar to that in mammals on the basis of the high level of conservatism in the axial skeleton of this lineage.
Thus, the mouse code provides a model for understanding the evolutionary mechanisms responsible for the great morphological adaptability of the cervical vertebral column in Synapsida. However, more studies in non-model organisms are required to further elucidate the evolutionary role of genes in axial patterning of the unique mammalian body plan.
颈椎作为头骨 - 颈部系统的一部分,在促进四足动物的成功演化和多样性方面的重要性是显而易见的。然而,由于椎骨数量的变化,其演化的重建存在问题,这使得难以识别同源元素。对不同主龙类动物颈部形态分化的量化确定了由颈椎柱内基因表达模式产生的同源椎骨单位(即模块)。本研究旨在研究小鼠颈椎柱的模块化,并揭示现代哺乳动物及其已灭绝亲属颈部演化背后的遗传模式和变化。与现代哺乳动物不同,非哺乳类合弓纲动物的特征是颈椎数量可变、存在游离的颈肋以及存在独立的第一颈椎椎体。这些演化修饰如何与编码的变化相关联呢?
结合有关颈椎基因表达的最新信息,包括对基因敲除突变体椎骨表型的描述,基于三维地标点的几何形态测量方法证明了小鼠中编码与椎骨形态之间的相关性。有证据表明,小鼠颈部的模块化在哺乳动物的最后一个共同祖先中就已经确立,但与非哺乳类合弓纲动物不同。合弓纲动物演化过程中可能发生的差异包括与颈肋减少相关的表达向前移位,以及与高度分化的寰椎 - 枢椎复合体发育相关的表达向前移位,而基于该谱系轴向骨骼的高度保守性,其余基因可能表现出与哺乳动物相似的模式。
因此,小鼠编码为理解合弓纲中颈椎柱巨大形态适应性的演化机制提供了一个模型。然而,需要对非模式生物进行更多研究,以进一步阐明基因在独特哺乳动物身体结构轴向模式形成中的演化作用。