Randau Marcela, Goswami Anjali
Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
Department of Earth Sciences, University College London, Gower Street, London, UK.
BMC Evol Biol. 2017 Jun 9;17(1):133. doi: 10.1186/s12862-017-0975-2.
Previous studies have demonstrated that the clear morphological differences among vertebrae across the presacral column are accompanied by heterogeneous functional signals in vertebral shape. Further, several lines of evidence suggest that the mammalian axial skeleton is a highly modular structure. These include its composition of serial units, a trade-off between high shape variance and strong conservation of vertebral count, and direct association of regions with anterior expression sites of Hox genes. Here we investigate the modular organisation of the presacral vertebral column of modern cats (Felidae, Carnivora, Mammalia) with pairwise comparisons of vertebral shape covariation (i.e. integration) and evaluate our results against hypotheses of developmental and functional modularity. We used three-dimensional geometric morphometrics to quantify vertebral shape and then assessed integration between pairs of vertebrae with phylogenetic two-block partial least square analysis (PLS).
Six modules were identified in the pairwise analyses (vertebrae included are designated as 'C' for cervical, 'T' for thoracic, and 'L' for lumbar): an anterior module (C1 to T1); a transitional module situated between the last cervicals and first thoracics (C6 to T2); an anterior to middle thoracic set (T4 to T8); an anticlinal module (T10 and T11); a posterior set composed of the last two thoracics and lumbars (T12 to L7); and a module showing covariation between the cervicals and the posterior set (T12 to L7). These modules reflect shared developmental pathways, ossification timing, and observed ecological shape diversification in living species of felids.
We show here that patterns of shape integration reflect modular organisation of the vertebral column of felids. Whereas this pattern corresponds with hypotheses of developmental and functional regionalisation in the axial skeleton, it does not simply reflect major vertebral regions. This modularity may also have permitted vertebral partitions, specifically in the posterior vertebral column, to be more responsive to selection and achieve higher morphological disparity than other vertebral regions.
先前的研究表明,骶前柱各椎体之间明显的形态差异伴随着椎体形状的异质性功能信号。此外,有几条证据表明,哺乳动物的中轴骨骼是一种高度模块化的结构。这些证据包括其由连续单元组成、高形状变异性与椎体数量的强保守性之间的权衡,以及各区域与Hox基因前表达位点的直接关联。在此,我们通过对椎体形状协变(即整合)进行成对比较,研究现代猫科动物(猫科、食肉目、哺乳纲)骶前脊柱的模块化组织,并根据发育和功能模块化的假设评估我们的结果。我们使用三维几何形态测量学来量化椎体形状,然后用系统发育双块偏最小二乘分析(PLS)评估椎体对之间的整合情况。
在成对分析中识别出六个模块(所包含的椎体分别用“C”表示颈椎、“T”表示胸椎、“L”表示腰椎):一个前部模块(C1至T1);一个位于最后颈椎和第一胸椎之间的过渡模块(C6至T2);一组中前部胸椎(T4至T8);一个脊柱后凸模块(T10和T11);一个由最后两个胸椎和腰椎组成的后部模块(T12至L7);以及一个显示颈椎与后部模块(T12至L7)之间协变的模块。这些模块反映了猫科现存物种中共同的发育途径、骨化时间以及观察到的生态形状多样化。
我们在此表明,形状整合模式反映了猫科动物脊柱的模块化组织。虽然这种模式与中轴骨骼发育和功能区域化的假设相对应,但它并不简单地反映主要的椎体区域。这种模块化也可能使椎体分区,特别是在脊柱后部,对选择更具响应性,并比其他椎体区域实现更高的形态差异。