Suppr超能文献

使用带有动态运动基元的递归贝叶斯估计对复杂运动轨迹进行高精度神经解码。

High Precision Neural Decoding of Complex Movement Trajectories using Recursive Bayesian Estimation with Dynamic Movement Primitives.

作者信息

Hotson Guy, Smith Ryan J, Rouse Adam G, Schieber Marc H, Thakor Nitish V, Wester Brock A

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

IEEE Robot Autom Lett. 2016 Jul;1(2):676-683. doi: 10.1109/LRA.2016.2516590. Epub 2016 Jan 11.

Abstract

Brain-machine interfaces (BMIs) are a rapidly progressing technology with the potential to restore function to victims of severe paralysis via neural control of robotic systems. Great strides have been made in directly mapping a user's cortical activity to control of the individual degrees of freedom of robotic end-effectors. While BMIs have yet to achieve the level of reliability desired for widespread clinical use, environmental sensors (e.g. RGB-D cameras for object detection) and prior knowledge of common movement trajectories hold great potential for improving system performance. Here we present a novel sensor fusion paradigm for BMIs that capitalizes on information able to be extracted from the environment to greatly improve the performance of control. This was accomplished by using dynamic movement primitives to model the 3D endpoint trajectories of manipulating various objects. We then used a switching unscented Kalman filter to continuously arbitrate between the 3D endpoint kinematics predicted by the dynamic movement primitives and control derived from neural signals. We experimentally validated our system by decoding 3D endpoint trajectories executed by a non-human primate manipulating four different objects at various locations. Performance using our system showed a dramatic improvement over using neural signals alone, with median distance between actual and decoded trajectories decreasing from 31.1 cm to 9.9 cm, and mean correlation increasing from 0.80 to 0.98. Our results indicate that our sensor fusion framework can dramatically increase the fidelity of neural prosthetic trajectory decoding.

摘要

脑机接口(BMI)是一项发展迅速的技术,有潜力通过对机器人系统的神经控制为严重瘫痪患者恢复功能。在将用户的皮层活动直接映射到对机器人末端执行器各个自由度的控制方面已经取得了巨大进展。虽然脑机接口尚未达到广泛临床应用所需的可靠性水平,但环境传感器(如用于目标检测的RGB-D相机)和常见运动轨迹的先验知识在提高系统性能方面具有巨大潜力。在此,我们提出了一种用于脑机接口的新型传感器融合范式,该范式利用能够从环境中提取的信息来大幅提高控制性能。这是通过使用动态运动基元对操纵各种物体的三维端点轨迹进行建模来实现的。然后,我们使用切换无迹卡尔曼滤波器在动态运动基元预测的三维端点运动学和神经信号衍生的控制之间持续进行仲裁。我们通过解码由非人类灵长类动物在不同位置操纵四个不同物体所执行的三维端点轨迹,对我们的系统进行了实验验证。使用我们的系统的性能相对于仅使用神经信号有了显著提高,实际轨迹和解码轨迹之间的中位数距离从31.1厘米降至9.9厘米,平均相关性从0.80提高到0.98。我们的结果表明,我们的传感器融合框架可以显著提高神经假体轨迹解码的保真度。

相似文献

7
Unscented Kalman filter for brain-machine interfaces.用于脑机接口的无迹卡尔曼滤波器。
PLoS One. 2009 Jul 15;4(7):e6243. doi: 10.1371/journal.pone.0006243.
8
Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.闭环脑机接口中冗余运动学自由度的控制
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):750-760. doi: 10.1109/TNSRE.2016.2593696. Epub 2016 Jul 21.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验