Suppr超能文献

使用ReFIT卡尔曼滤波器对单个手指组运动进行皮层解码。

Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.

作者信息

Vaskov Alex K, Irwin Zachary T, Nason Samuel R, Vu Philip P, Nu Chrono S, Bullard Autumn J, Hill Mackenna, North Naia, Patil Parag G, Chestek Cynthia A

机构信息

Robotics Graduate Program, University of Michigan, Ann Arbor, MI, United States.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.

出版信息

Front Neurosci. 2018 Nov 5;12:751. doi: 10.3389/fnins.2018.00751. eCollection 2018.

Abstract

To date, many brain-machine interface (BMI) studies have developed decoding algorithms for neuroprostheses that provide users with precise control of upper arm reaches with some limited grasping capabilities. However, comparatively few have focused on quantifying the performance of precise finger control. Here we expand upon this work by investigating online control of individual finger groups. We have developed a novel training manipulandum for non-human primate (NHP) studies to isolate the movements of two specific finger groups: index and middle-ring-pinkie (MRP) fingers. We use this device in combination with the ReFIT (Recalibrated Feedback Intention-Trained) Kalman filter to decode the position of each finger group during a single degree of freedom task in two rhesus macaques with Utah arrays in motor cortex. The ReFIT Kalman filter uses a two-stage training approach that improves online control of upper arm tasks with substantial reductions in orbiting time, thus making it a logical first choice for precise finger control. Both animals were able to reliably acquire fingertip targets with both index and MRP fingers, which they did in blocks of finger group specific trials. Decoding from motor signals online, the ReFIT Kalman filter reliably outperformed the standard Kalman filter, measured by bit rate, across all tested finger groups and movements by 31.0 and 35.2%. These decoders were robust when the manipulandum was removed during online control. While index finger movements and middle-ring-pinkie finger movements could be differentiated from each other with 81.7% accuracy across both subjects, the linear Kalman filter was not sufficient for decoding both finger groups together due to significant unwanted movement in the stationary finger, potentially due to co-contraction. To our knowledge, this is the first systematic and biomimetic separation of digits for continuous online decoding in a NHP as well as the first demonstration of the ReFIT Kalman filter improving the performance of precise finger decoding. These results suggest that novel nonlinear approaches, apparently not necessary for center out reaches or gross hand motions, may be necessary to achieve independent and precise control of individual fingers.

摘要

迄今为止,许多脑机接口(BMI)研究已经开发出用于神经假体的解码算法,这些算法能让用户对上臂伸展进行精确控制,并具备一定的有限抓握能力。然而,相对较少的研究关注于精确手指控制性能的量化。在此,我们通过研究单个手指组的在线控制来拓展这项工作。我们开发了一种用于非人类灵长类动物(NHP)研究的新型训练操作器,以分离两个特定手指组的运动:食指和中环小指(MRP)。我们将此设备与重新校准反馈意图训练(ReFIT)卡尔曼滤波器相结合,在两只植入了运动皮层犹他阵列的恒河猴进行单自由度任务期间,解码每个手指组的位置。ReFIT卡尔曼滤波器采用两阶段训练方法,可改善上臂任务的在线控制,显著减少绕行时间,因此成为精确手指控制的合理首选。两只动物都能够可靠地用食指和MRP手指获取指尖目标,它们在手指组特定试验块中完成此操作。在线从运动信号进行解码时,以比特率衡量,ReFIT卡尔曼滤波器在所有测试的手指组和运动中均可靠地优于标准卡尔曼滤波器,优势分别为31.0%和35.2%。当在线控制期间移除操作器时,这些解码器表现稳健。虽然两只受试动物的食指运动和中环小指运动能够以81.7% 的准确率相互区分,但由于静止手指存在明显不必要的运动(可能是由于共同收缩),线性卡尔曼滤波器不足以同时解码两个手指组。据我们所知,这是首次在NHP中进行系统性和仿生学的手指分离以实现连续在线解码,并首次证明ReFIT卡尔曼滤波器可提高精确手指解码性能。这些结果表明,对于实现单个手指独立且精确的控制,新颖的非线性方法可能是必要的,而对于中心外伸展或粗略手部动作而言显然并非必需。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1590/6231049/bb0c1cb6c0e1/fnins-12-00751-g0001.jpg

相似文献

引用本文的文献

9
Neural Decoding for Intracortical Brain-Computer Interfaces.用于皮层内脑机接口的神经解码
Cyborg Bionic Syst. 2023 Jul 28;4:0044. doi: 10.34133/cbsystems.0044. eCollection 2023.

本文引用的文献

9
Intracortical microstimulation of human somatosensory cortex.人类体感皮层的皮层内微刺激。
Sci Transl Med. 2016 Oct 19;8(361):361ra141. doi: 10.1126/scitranslmed.aaf8083. Epub 2016 Oct 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验