Moran Andrew E, Liu Kiang
Am J Epidemiol. 2017 Oct 15;186(8):908-909. doi: 10.1093/aje/kwx146.
Meaningful inference in epidemiology relies on accurate exposure measurement. In longitudinal observational studies, having more exposure data in the form of repeated measurements in the same individuals adds useful information. But exactly how much do repeated measurements add, incremental to the information provided by baseline measurements? In this issue of the Journal, Paige et al. (Am J Epidemiol. 2017;186(8):899-907 have quantified the value of adding repeated cholesterol and blood pressure measurements to baseline measurements in a meta-analysis of individual participant data from 38 longitudinal cohort studies. Repeated measurements improve prediction significantly, but the magnitude of this gain in information may be less than expected. In research studies and clinical practice, quality of measurement is more important than quantity.
流行病学中有意义的推断依赖于准确的暴露测量。在纵向观察性研究中,以对同一受试者进行重复测量的形式获取更多暴露数据会增加有用信息。但重复测量到底能增加多少信息,相对于基线测量所提供的信息而言是增量的呢?在本期《杂志》中,佩奇等人(《美国流行病学杂志》。2017年;186(8):899 - 907)在对38项纵向队列研究的个体参与者数据进行的荟萃分析中,量化了将重复的胆固醇和血压测量添加到基线测量中的价值。重复测量显著改善了预测,但这种信息增益的幅度可能低于预期。在研究和临床实践中,测量质量比数量更重要。