长期暴露于升高的收缩压预测心血管疾病事件:来自大规模常规电子健康记录的证据。
Long-Term Exposure to Elevated Systolic Blood Pressure in Predicting Incident Cardiovascular Disease: Evidence From Large-Scale Routine Electronic Health Records.
机构信息
1 Deep Medicine Oxford Martin School Oxford United Kingdom.
2 The George Institute for Global Health (UK) University of Oxford United Kingdom.
出版信息
J Am Heart Assoc. 2019 Jun 18;8(12):e012129. doi: 10.1161/JAHA.119.012129. Epub 2019 Jun 5.
Background How measures of long-term exposure to elevated blood pressure might add to the performance of "current" blood pressure in predicting future cardiovascular disease is unclear. We compared incident cardiovascular disease risk prediction using past, current, and usual systolic blood pressure alone or in combination. Methods and Results Using data from UK primary care linked electronic health records, we applied a landmark cohort study design and identified 80 964 people, aged 50 years (derivation cohort=64 772; validation cohort=16 192), who, at study entry, had recorded blood pressure, no prior cardiovascular disease, and no previous antihypertensive or lipid-lowering prescriptions. We used systolic blood pressure recorded up to 10 years before baseline to estimate past systolic blood pressure (mean, time-weighted mean, and variability) and usual systolic blood pressure (correcting current values for past time-dependent blood pressure fluctuations) and examined their prospective relation with incident cardiovascular disease (first hospitalization for or death from coronary heart disease or stroke/transient ischemic attack). We used Cox regression to estimate hazard ratios and applied Bayesian analysis within a machine learning framework in model development and validation. Predictive performance of models was assessed using discrimination (area under the receiver operating characteristic curve) and calibration metrics. We found that elevated past, current, and usual systolic blood pressure values were separately and independently associated with increased incident cardiovascular disease risk. When used alone, the hazard ratio (95% credible interval) per 20-mm Hg increase in current systolic blood pressure was 1.22 (1.18-1.30), but associations were stronger for past systolic blood pressure (mean and time-weighted mean) and usual systolic blood pressure (hazard ratio ranging from 1.39-1.45). The area under the receiver operating characteristic curve for a model that included current systolic blood pressure, sex, smoking, deprivation, diabetes mellitus, and lipid profile was 0.747 (95% credible interval, 0.722-0.811). The addition of past systolic blood pressure mean, time-weighted mean, or variability to this model increased the area under the receiver operating characteristic curve (95% credible interval) to 0.750 (0.727-0.811), 0.750 (0.726-0.811), and 0.748 (0.723-0.811), respectively, with all models showing good calibration. Similar small improvements in area under the receiver operating characteristic curve were observed when testing models on the validation cohort, in sex-stratified analyses, or by using different landmark ages (40 or 60 years). Conclusions Using multiple blood pressure recordings from patients' electronic health records showed stronger associations with incident cardiovascular disease than a single blood pressure measurement, but their addition to multivariate risk prediction models had negligible effects on model performance.
背景 目前尚不清楚长期暴露于高血压的测量值是否可以提高“当前”血压在预测未来心血管疾病方面的表现。我们比较了单独或组合使用过去、当前和通常的收缩压来预测未来心血管疾病风险的情况。
方法和结果 利用来自英国初级保健机构电子健康记录的数据,我们采用了一个里程碑式的队列研究设计,确定了 80964 名年龄在 50 岁(推导队列=64772;验证队列=16192)的患者,这些患者在研究开始时记录了血压,没有先前的心血管疾病,也没有先前的抗高血压或降脂药物处方。我们使用在基线前最多 10 年记录的收缩压来估计过去的收缩压(平均值、时间加权平均值和变异性)和通常的收缩压(通过校正过去与血压波动相关的当前值),并检查它们与新发心血管疾病(首次因冠心病或中风/短暂性脑缺血发作住院或死亡)的前瞻性关系。我们使用 Cox 回归估计危险比,并在机器学习框架内进行模型开发和验证的贝叶斯分析。使用判别(接受者操作特征曲线下的面积)和校准指标评估模型的预测性能。
我们发现,升高的过去、当前和通常的收缩压值分别与增加的新发心血管疾病风险独立相关。当单独使用时,每增加 20mmHg 当前收缩压的危险比(95%可信区间)为 1.22(1.18-1.30),但过去的收缩压(平均值和时间加权平均值)和通常的收缩压(危险比范围为 1.39-1.45)的相关性更强。包括当前收缩压、性别、吸烟、贫困、糖尿病和血脂谱的模型的接受者操作特征曲线下面积为 0.747(95%可信区间,0.722-0.811)。将过去的收缩压平均值、时间加权平均值或变异性添加到此模型中,会增加接受者操作特征曲线下的面积(95%可信区间)至 0.750(0.727-0.811)、0.750(0.726-0.811)和 0.748(0.723-0.811),所有模型均显示出良好的校准。在验证队列、性别分层分析或使用不同的里程碑年龄(40 岁或 60 岁)测试模型时,观察到接受者操作特征曲线下面积的类似小改善。
结论 使用患者电子健康记录中的多次血压记录与新发心血管疾病的相关性强于单次血压测量,但将其添加到多变量风险预测模型中对模型性能几乎没有影响。