Suppr超能文献

一种旨在找出因药品标签错误、伪造(假冒)而受到伤害的患者的工具的开发与评估。

The development and appraisal of a tool designed to find patients harmed by falsely labelled, falsified (counterfeit) medicines.

作者信息

Anđelković Marija, Björnsson Einar, De Bono Virgilio, Dikić Nenad, Devue Katleen, Ferlin Daniel, Hanževački Miroslav, Jónsdóttir Freyja, Shakaryan Mkrtich, Walser Sabine

机构信息

Sports Medicine Association of Serbia, 11000, Belgrade, Serbia.

Landspitali University Hospitali, Eiriksgata 5, 101, Reykjavík, Iceland.

出版信息

BMC Health Serv Res. 2017 Jun 20;17(1):419. doi: 10.1186/s12913-017-2235-y.

Abstract

BACKGROUND

Falsely labelled, falsified (counterfeit) medicines (FFCm's) are produced or distributed illegally and can harm patients. Although the occurrence of FFCm's is increasing in Europe, harm is rarely reported. The European Directorate for the Quality of Medicines & Health-Care (EDQM) has therefore coordinated the development and validation of a screening tool.

METHODS

The tool consists of a questionnaire referring to a watch-list of FFCm's identified in Europe, including symptoms of their use and individual risk factors, and a scoring form. To refine the questionnaire and reference method, a pilot-study was performed in 105 self-reported users of watch-list medicines. Subsequently, the tool was validated under "real-life conditions" in 371 patients in 5 ambulatory and in-patient care sites ("sub-studies"). The physicians participating in the study scored the patients and classified their risk of harm as "unlikely" or "probable" (cut-off level: presence of ≥2 of 5 risk factors). They assessed all medical records retrospectively (independent reference method) to validate the risk classification and documented their perception of the tool's value.

RESULTS

In 3 ambulatory care sites (180 patients), the tool correctly classified 5 patients as harmed by FFCm's. The positive and negative likelihood ratios (LR+/LR-) and the discrimination power were calculated for two cut-off levels: a) 1 site (50 patients): presence of two risk factors (at 10% estimated health care system contamination with FFCm's): LR + 4.9/LR-0, post-test probability: 35%; b) 2 sites (130 patients): presence of three risk factors (at 5% estimated prevalence of use of non-prescribed medicines (FFCm's) by certain risk groups): LR + 9.7/LR-0, post-test probability: 33%. In 2 in-patient care sites (191 patients), no patient was confirmed as harmed by FFCm's. The physicians perceived the tool as valuable for finding harm, and as an information source regarding risk factors.

CONCLUSIONS

This "decision aid" is a systematic tool which helps find in medical practice patients harmed by FFCm's. This study supports its value in ambulatory care in regions with health care system contamination and in certain risk groups. The establishment of systematic communication between authorities and the medical community concerning FFCm's, current patterns of use and case reports may sustain positive public health impacts.

摘要

背景

假药(假冒药品)是非法生产或销售的,会对患者造成伤害。尽管欧洲假药的出现呈上升趋势,但危害报告却很少。因此,欧洲药品与医疗保健质量管理局(EDQM)协调了一种筛查工具的开发与验证工作。

方法

该工具包括一份问卷,涉及在欧洲确定的假药观察清单,包括用药症状和个体风险因素,以及一份评分表。为完善问卷和参考方法,对105名自称使用观察清单药品的用户进行了一项试点研究。随后,该工具在5个门诊和住院护理场所的371名患者中在“实际生活条件”下进行了验证(“子研究”)。参与研究的医生对患者进行评分,并将他们的伤害风险分类为“不太可能”或“可能”(临界值:5个风险因素中存在≥2个)。他们回顾性评估了所有病历(独立参考方法)以验证风险分类,并记录了他们对该工具价值的看法。

结果

在3个门诊护理场所(180名患者),该工具正确将5名患者分类为受到假药伤害。计算了两个临界值的阳性和阴性似然比(LR+/LR-)及辨别力:a)1个场所(50名患者):存在两个风险因素(估计医疗保健系统中假药污染率为10%):LR+4.9/LR-0,验后概率:35%;b)2个场所(130名患者):存在三个风险因素(某些风险组中使用非处方药(假药)的估计患病率为5%):LR+9.7/LR-0,验后概率:33%。在2个住院护理场所(191名患者),没有患者被确认为受到假药伤害。医生们认为该工具对于发现伤害以及作为风险因素的信息来源很有价值。

结论

这种“决策辅助工具”是一种系统性工具,有助于在医疗实践中发现受假药伤害的患者。本研究支持其在医疗保健系统受到污染的地区的门诊护理以及某些风险组中的价值。当局与医学界就假药、当前使用模式和病例报告建立系统性沟通,可能会产生积极的公共卫生影响。

相似文献

10
Public Health Implications of Counterfeit Medications.假冒药品对公共卫生的影响。
Nurs Womens Health. 2018 Jun;22(3):264-268. doi: 10.1016/j.nwh.2018.03.001.

本文引用的文献

6
Letter: Nomogram for Bayes's theorem.信件:贝叶斯定理的列线图。
N Engl J Med. 1975 Jul 31;293(5):257. doi: 10.1056/NEJM197507312930513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验