Suppr超能文献

小麦(普通小麦)中与叶锈病(小麦叶锈菌)抗性相关的三个基因家族的预测与分析。

Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

作者信息

Peng Fred Y, Yang Rong-Cai

机构信息

Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.

Feed Crops Section, Alberta Agriculture and Forestry, 7000 - 113 Street, Edmonton, AB, T6H 5T6, Canada.

出版信息

BMC Plant Biol. 2017 Jun 20;17(1):108. doi: 10.1186/s12870-017-1056-9.

Abstract

BACKGROUND

The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance.

RESULTS

We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for adult resistance and six SNPs for seedling resistance in the NLR genes. Most of these coding SNPs were predicted to alter encoded amino acids and such information may serve as a starting point towards more thorough molecular and functional characterization of the designated Lr genes. Using the primer sequences of 99 known non-SNP markers from leaf rust resistance QTLs, we found candidate genes closely linked to these markers, including Lr34 with distances to its two gene-specific markers being 1212 bases (to cssfr1) and 2189 bases (to cssfr2).

CONCLUSION

This study represents a comprehensive analysis of ABC, NLR and START genes in the hexaploid wheat genome and their physical relationships with QTLs for leaf rust resistance at seedling and adult stages. Our analysis suggests that the ABC (and START) genes are more likely to be co-located with QTLs for race-nonspecific, adult resistance whereas the NLR genes are more likely to be co-located with QTLs for race-specific resistance that would be often expressed at the seedling stage. Though our analysis was hampered by inaccurate or unknown physical positions of numerous QTLs due to the incomplete assembly of the complex hexaploid wheat genome that is currently available, the observed associations between (i) QTLs for race-specific resistance and NLR genes and (ii) QTLs for nonspecific resistance and ABC genes will help discover SNP variants for leaf rust resistance at seedling and adult stages. The genes containing nonsynonymous SNPs are promising candidates that can be investigated in future studies as potential new sources of leaf rust resistance in wheat breeding.

摘要

背景

在过去几十年中,对小麦(普通小麦)中由小麦叶锈菌引起的叶锈病抗性进行了深入研究,已在不同染色体上定位了70多个抗叶锈病基因(Lr基因),并使用DNA标记检测或定位了许多数量性状位点(QTL)。这种抗性通常分为小种专化抗性和非小种专化抗性。非小种专化抗性可进一步分为对同一种病原体的大多数或所有小种的抗性以及对多种病原体的抗性。在分子水平上,这三种抗性类型可能涵盖了由小麦中编码不同蛋白家族的基因所控制的病原体特异性的整个范围。本研究的目的是预测和分析三个这样的蛋白家族中的基因:NBS-LRR(核苷酸结合位点和富含亮氨酸重复序列或NLR)、START(类固醇生成急性调节蛋白[STaR]相关脂质转运蛋白)和ABC(ATP结合盒)转运蛋白。分析的重点是这些基因家族内的蛋白质编码基因与检测到的叶锈病抗性QTL之间的关系模式。

结果

通过对小麦蛋白质组进行结构域分析,我们在六倍体小麦基因组中预测了526个ABC基因、1117个NLR基因和144个START基因。在小麦幼苗期和成株期叶锈病抗性QTL的1809个单核苷酸多态性(SNP)中,发现有126个SNP位于这些基因的编码区或其附近区域(基因转录起始位点[TSS]上游5 kb或转录终止位点[TTS]下游)。其中,43个成株期抗性SNP和18个幼苗期抗性SNP位于ABC基因的编码区或相邻区域,而14个成株期抗性SNP和29个幼苗期抗性SNP位于NLR基因的编码区或相邻区域。此外,我们在ABC基因中发现了17个成株期抗性非同义SNP和5个幼苗期抗性SNP,在NLR基因中发现了5个成株期抗性非同义SNP和6个幼苗期抗性SNP。这些编码SNP中的大多数预计会改变编码的氨基酸,这些信息可作为对指定Lr基因进行更全面的分子和功能表征的起点。利用来自叶锈病抗性QTLs的99个已知非SNP标记的引物序列,我们发现了与这些标记紧密连锁的候选基因,包括Lr34,其与两个基因特异性标记的距离分别为1212个碱基(至cssfr1)和2189个碱基(至cssfr2)。

结论

本研究对六倍体小麦基因组中的ABC、NLR和START基因及其与幼苗期和成株期叶锈病抗性QTL的物理关系进行了全面分析。我们的分析表明,ABC(和START)基因更有可能与非小种专化的成株期抗性QTL共定位,而NLR基因更有可能与通常在幼苗期表达的小种专化抗性QTL共定位。尽管由于目前可用的复杂六倍体小麦基因组组装不完整,许多QTL的物理位置不准确或未知,阻碍了我们的分析,但观察到的(i)小种专化抗性QTL与NLR基因之间以及(ii)非专化抗性QTL与ABC基因之间的关联,将有助于发现幼苗期和成株期叶锈病抗性的SNP变异。含有非同义SNP的基因是有前途的候选基因,可在未来研究中作为小麦育种中叶锈病抗性的潜在新来源进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d30/5477749/5d75391f939f/12870_2017_1056_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验