Wolkewitz Martin, von Cube Maja, Schumacher Martin
Faculty of Medicine and Medical Center,Institute for Medical Biometry and Statistics,University of Freiburg,Freiburg,Germany.
Infect Control Hosp Epidemiol. 2017 Aug;38(8):953-959. doi: 10.1017/ice.2017.107. Epub 2017 Jun 21.
OBJECTIVE Multistate and competing risks models have become an established and adequate tool with which to quantify determinants and consequences of nosocomial infections. In this tutorial article, we explain and demonstrate the basics of these models to a broader audience of professionals in health care, infection control, and hospital epidemiology. METHODS Using a publicly available data set from a cohort study of intensive care unit patients, we show how hospital infection data can be displayed and explored graphically and how simple formulas are derived under some simplified assumptions for illustrating the basic ideas behind multistate models. Only a few simply accessible values (event counts and patient days) and a pocket calculator are needed to reveal basic insights into cumulative risk and clinical outcomes of nosocomial infection in terms of mortality and length of stay. RESULTS We show how to use these values to perform basic multistate analyses in own data or to correct biased estimates in published data, as these values are often reported. We also show relationships between multistate-based hazard ratios and odds ratios, which are derived from the popular logistic regression model. CONCLUSIONS No sophisticated statistical software is required to apply a basic multistate model and to avoid typical pitfalls such as time-dependent or competing-risks bias. Infect Control Hosp Epidemiol 2017;38:953-959.
目的 多状态和竞争风险模型已成为一种既定且适用的工具,可用于量化医院感染的决定因素和后果。在这篇教程文章中,我们向更广泛的医疗保健、感染控制和医院流行病学专业人员群体解释并演示这些模型的基础知识。方法 使用来自重症监护病房患者队列研究的公开可用数据集,我们展示了如何以图形方式显示和探索医院感染数据,以及在一些简化假设下如何推导简单公式以阐明多状态模型背后的基本思想。仅需几个易于获取的值(事件计数和患者住院天数)和一个袖珍计算器,就能揭示医院感染在死亡率和住院时长方面的累积风险和临床结果的基本见解。结果 我们展示了如何使用这些值在自己的数据中进行基本的多状态分析,或纠正已发表数据中的偏差估计,因为这些值经常被报告。我们还展示了基于多状态的风险比与从流行的逻辑回归模型得出的优势比之间的关系。结论 应用基本的多状态模型并避免诸如时间依赖性或竞争风险偏差等典型陷阱,无需复杂的统计软件。《感染控制与医院流行病学》2017 年;38:953 - 959。