Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
Physical and Materials Chemistry Division, CSIR-NCL, Pune 411008, India.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5825-E5834. doi: 10.1073/pnas.1705311114. Epub 2017 Jun 20.
Allosteric effect implies ligand binding at one site leading to structural and/or dynamical changes at a distant site. PDZ domains are classic examples of dynamic allostery without conformational changes, where distal side-chain dynamics is modulated on ligand binding and the origin has been attributed to entropic effects. In this work, we unearth the energetic basis of the observed dynamic allostery in a PDZ3 domain protein using molecular dynamics simulations. We demonstrate that electrostatic interaction provides a highly sensitive yardstick to probe the allosteric modulation in contrast to the traditionally used structure-based parameters. There is a significant population shift in the hydrogen-bonded network and salt bridges involving side chains on ligand binding. The ligand creates a local energetic perturbation that propagates in the form of dominolike changes in interresidue interaction pattern. There are significant changes in the nature of specific interactions (nonpolar/polar) between interresidue contacts and accompanied side-chain reorientations that drive the major redistribution of energy. Interestingly, this internal redistribution and rewiring of side-chain interactions led to large cancellations resulting in small change in the overall enthalpy of the protein, thus making it difficult to detect experimentally. In contrast to the prevailing focus on the entropic or dynamic effects, we show that the internal redistribution and population shift in specific electrostatic interactions drive the allosteric modulation in the PDZ3 domain protein.
变构效应意味着配体在一个位点的结合导致在远处的位点发生结构和/或动力学变化。PDZ 结构域是动态变构而没有构象变化的经典例子,其中配体结合时远端侧链动力学受到调节,其起源归因于熵效应。在这项工作中,我们使用分子动力学模拟揭示了 PDZ3 结构域蛋白中观察到的动态变构的能量基础。我们证明静电相互作用提供了一个高度敏感的尺度来探测变构调节,与传统使用的基于结构的参数形成对比。在配体结合时,涉及侧链的氢键网络和盐桥发生了显著的种群转移。配体产生局部能量扰动,以多米诺骨牌样的变化形式在残基间相互作用模式中传播。特定相互作用(非极性/极性)之间的相互作用性质和伴随的侧链重排发生了重大变化,从而导致能量的主要重新分布。有趣的是,这种侧链相互作用的内部重新分配和重新布线导致了很大的抵消,导致蛋白质的总焓变化很小,因此很难在实验中检测到。与普遍关注的熵或动态效应相反,我们表明 PDZ3 结构域蛋白中特定静电相互作用的内部重新分配和种群转移驱动了变构调节。