Suppr超能文献

运用全原子模拟技术研究 PICK1 PDZ 结构域对不同配体的别构响应。

Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all-atom simulations.

机构信息

Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico, USA.

Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona, USA.

出版信息

Protein Sci. 2022 Dec;31(12):e4474. doi: 10.1002/pro.4474.

Abstract

The PDZ family is comprised of small modular domains that play critical roles in the allosteric modulation of many cellular signaling processes by binding to the C-terminal tail of different proteins. As dominant modular proteins that interact with a diverse set of peptides, it is of particular interest to explore how different binding partners induce different allosteric effects on the same PDZ domain. Because the PICK1 PDZ domain can bind different types of ligands, it is an ideal test case to answer this question and explore the network of interactions that give rise to dynamic allostery. Here, we use all-atom molecular dynamics simulations to explore dynamic allostery in the PICK1 PDZ domain by modeling two PICK1 PDZ systems: PICK1 PDZ-DAT and PICK1 PDZ-GluR2. Our results suggest that ligand binding to the PICK1 PDZ domain induces dynamic allostery at the αA helix that is similar to what has been observed in other PDZ domains. We found that the PICK1 PDZ-ligand distance is directly correlated with both dynamic changes of the αA helix and the distance between the αA helix and βB strand. Furthermore, our work identifies a hydrophobic core between DAT/GluR2 and I35 as a key interaction in inducing such dynamic allostery. Finally, the unique interaction patterns between different binding partners and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that unique allosteric coupling patterns with different ligands may play a critical role in how PICK1 performs its biological functions in various signaling networks.

摘要

PDZ 家族由小的模块化结构域组成,通过与不同蛋白质的 C 末端尾部结合,在许多细胞信号转导过程的变构调节中发挥关键作用。作为与多种肽段相互作用的主要模块化蛋白质,探索不同的结合伙伴如何对同一 PDZ 结构域产生不同的变构效应具有特殊意义。由于 PICK1 PDZ 结构域可以结合不同类型的配体,因此它是回答这个问题并探索导致动态变构的相互作用网络的理想测试案例。在这里,我们使用全原子分子动力学模拟来通过模拟两个 PICK1 PDZ 系统:PICK1 PDZ-DAT 和 PICK1 PDZ-GluR2 来探索 PICK1 PDZ 结构域中的动态变构。我们的结果表明,配体与 PICK1 PDZ 结构域的结合会在 αA 螺旋上诱导类似的动态变构,这在其他 PDZ 结构域中也有观察到。我们发现 PICK1 PDZ-配体的距离与 αA 螺旋的动态变化以及 αA 螺旋和 βB 链之间的距离直接相关。此外,我们的工作确定了 DAT/GluR2 和 I35 之间的疏水区作为诱导这种动态变构的关键相互作用。最后,不同结合伙伴与 PICK1 PDZ 结构域之间的独特相互作用模式可以诱导 PICK1 PDZ 结构域发生独特的动态变化。我们怀疑与不同配体的独特变构偶联模式可能在 PICK1 在各种信号网络中发挥其生物学功能方面起着关键作用。

相似文献

2
Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain.
Cells. 2022 Aug 7;11(15):2451. doi: 10.3390/cells11152451.
3
[K83 site affects PICK1 PDZ binding ability].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2012 Mar;41(2):153-8. doi: 10.3785/j.issn.1008-9292.2012.02.005.
4
Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD.
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):413-8. doi: 10.1073/pnas.0902225107. Epub 2009 Dec 14.
5
The binding affinities of proteins interacting with the PDZ domain of PICK1.
Proteins. 2012 May;80(5):1393-408. doi: 10.1002/prot.24034. Epub 2012 Feb 24.
6
Molecular determinants for the complex binding specificity of the PDZ domain in PICK1.
J Biol Chem. 2005 May 27;280(21):20539-48. doi: 10.1074/jbc.M500577200. Epub 2005 Mar 17.
7
The PDZ domain of PICK1 differentially accepts protein kinase C-alpha and GluR2 as interacting ligands.
J Biol Chem. 2004 Oct 1;279(40):41393-7. doi: 10.1074/jbc.M404499200. Epub 2004 Jul 9.
9
Residue-Level Contact Reveals Modular Domain Interactions of PICK1 Are Driven by Both Electrostatic and Hydrophobic Forces.
Front Mol Biosci. 2021 Jan 27;7:616135. doi: 10.3389/fmolb.2020.616135. eCollection 2020.
10
Unconventional PDZ Recognition Revealed in α7 nAChR-PICK1 Complexes.
ACS Chem Neurosci. 2024 May 15;15(10):2070-2079. doi: 10.1021/acschemneuro.4c00138. Epub 2024 May 1.

引用本文的文献

1
RNA-induced Allosteric Coupling Drives Viral Capsid Assembly.
PRX Life. 2024 Mar;2(1). doi: 10.1103/prxlife.2.013012. Epub 2024 Mar 12.
2
Molecular Dynamics Insights into Peptide-Based Tetrodotoxin Delivery Nanostructures.
Molecules. 2024 Dec 27;30(1):61. doi: 10.3390/molecules30010061.
3
Molecular Dynamics Reveal Key Steps in BAR-Related Membrane Remodeling.
Pathogens. 2024 Oct 15;13(10):902. doi: 10.3390/pathogens13100902.
4

本文引用的文献

1
Recognizing the Binding Pattern and Dissociation Pathways of the p300 Taz2-p53 TAD2 Complex.
JACS Au. 2022 Aug 3;2(8):1935-1945. doi: 10.1021/jacsau.2c00358. eCollection 2022 Aug 22.
2
Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain.
Cells. 2022 Aug 7;11(15):2451. doi: 10.3390/cells11152451.
3
Benchmarking the Accuracy of AlphaFold 2 in Loop Structure Prediction.
Biomolecules. 2022 Jul 14;12(7):985. doi: 10.3390/biom12070985.
4
AlphaFold illuminates half of the dark human proteins.
Curr Opin Struct Biol. 2022 Jun;74:102372. doi: 10.1016/j.sbi.2022.102372. Epub 2022 Apr 16.
5
Allosterism in the PDZ Family.
Int J Mol Sci. 2022 Jan 27;23(3):1454. doi: 10.3390/ijms23031454.
7
FrustratometeR: an R-package to compute local frustration in protein structures, point mutants and MD simulations.
Bioinformatics. 2021 Sep 29;37(18):3038-3040. doi: 10.1093/bioinformatics/btab176.
8
N-Terminus of the Third PDZ Domain of PSD-95 Orchestrates Allosteric Communication for Selective Ligand Binding.
J Chem Inf Model. 2021 Jan 25;61(1):347-357. doi: 10.1021/acs.jcim.0c01079. Epub 2020 Dec 17.
9
Sensing the allosteric force.
Nat Commun. 2020 Nov 17;11(1):5841. doi: 10.1038/s41467-020-19689-7.
10
Protonation-Induced Dynamic Allostery in PDZ Domain: Evidence of Perturbation-Independent Universal Response Network.
J Phys Chem Lett. 2020 Nov 5;11(21):9026-9031. doi: 10.1021/acs.jpclett.0c02885. Epub 2020 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验