Suppr超能文献

蛋白质组学分析揭示了彩绒革盖菌 F21a 杀藻过程中大量的分解酶和主要代谢途径。

Proteomic analysis reveals large amounts of decomposition enzymes and major metabolic pathways involved in algicidal process of Trametes versicolor F21a.

机构信息

School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.

Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

出版信息

Sci Rep. 2017 Jun 20;7(1):3907. doi: 10.1038/s41598-017-04251-1.

Abstract

A recent algicidal mode indicates that fungal mycelia can wrap and eliminate almost all co-cultivated algal cells within a short time span. However, the underlying molecular mechanism is rarely understood. We applied proteomic analysis to investigate the algicidal process of Trametes versicolor F21a and identified 3,754 fungal proteins. Of these, 30 fungal enzymes with endo- or exoglycosidase activities such as β-1,3-glucanase, α-galactosidase, α-glucosidase, alginate lyase and chondroitin lyase were significantly up-regulated. These proteins belong to Glycoside Hydrolases, Auxiliary Activities, Carbohydrate Esterases and Polysaccharide Lyases, suggesting that these enzymes may degrade lipopolysaccharides, peptidoglycans and alginic acid of algal cells. Additionally, peptidase, exonuclease, manganese peroxidase and cytochrome c peroxidase, which decompose proteins and DNA or convert other small molecules of algal cells, could be other major decomposition enzymes. Gene Ontology and KEGG pathway enrichment analysis demonstrated that pyruvate metabolism and tricarboxylic acid cycle pathways play a critical role in response to adverse environment via increasing energy production to synthesize lytic enzymes or uptake molecules. Carbon metabolism, selenocompound metabolism, sulfur assimilation and metabolism, as well as several amino acid biosynthesis pathways could play vital roles in the synthesis of nutrients required by fungal mycelia.

摘要

最近的一种杀菌模式表明,真菌菌丝可以在短时间内包裹和消除几乎所有共培养的藻类细胞。然而,其潜在的分子机制很少被理解。我们应用蛋白质组学分析研究了云芝 F21a 的杀菌过程,鉴定了 3754 种真菌蛋白。其中,30 种具有内切或外切糖苷酶活性的真菌酶,如β-1,3-葡聚糖酶、α-半乳糖苷酶、α-葡萄糖苷酶、褐藻酸裂解酶和软骨素裂解酶,显著上调。这些蛋白质属于糖苷水解酶、辅助活性、碳水化合物酯酶和多糖裂解酶,表明这些酶可能降解藻类细胞的脂多糖、肽聚糖和褐藻酸。此外,分解蛋白质和 DNA 或转化藻类细胞其他小分子的肽酶、核酸外切酶、锰过氧化物酶和细胞色素 c 过氧化物酶可能是其他主要的分解酶。GO 和 KEGG 通路富集分析表明,丙酮酸代谢和三羧酸循环途径通过增加能量产生来合成裂解酶或摄取分子,从而在应对不利环境中发挥关键作用。碳代谢、硒化合物代谢、硫同化和代谢以及几种氨基酸生物合成途径可能在真菌菌丝所需营养物质的合成中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f4e/5478636/1a8d36b4de71/41598_2017_4251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验