Felt John M, Depaoli Sarah, Tiemensma Jitske
Department of Psychological Sciences, University of California, MercedMerced, CA, United States.
Front Neurosci. 2017 Jun 6;11:315. doi: 10.3389/fnins.2017.00315. eCollection 2017.
The stress response is a dynamic process that can be characterized by predictable biochemical and psychological changes. Biomarkers of the stress response are typically measured over time and require statistical methods that can model change over time. One flexible method of evaluating change over time is the latent growth curve model (LGCM). However, stress researchers seldom use the LGCM when studying biomarkers, despite their benefits. Stress researchers may be unaware of how these methods can be useful. Therefore, the purpose of this paper is to provide an overview of LGCMs in the context of stress research. We specifically highlight the unique benefits of using these approaches. Hypothetical examples are used to describe four forms of the LGCM. The following four specifications of the LGCM are described: basic LGCM, latent growth mixture model, piecewise LGCM, and LGCM for two parallel processes. The specifications of the LGCM are discussed in the context of the Trier Social Stress Test. Beyond the discussion of the four models, we present issues of modeling nonlinear patterns of change, assessing model fit, and linking specific research questions regarding biomarker research using different statistical models. The final sections of the paper discuss statistical software packages and more advanced modeling capabilities of LGCMs. The online Appendix contains example code with annotation from two statistical programs for the LCGM.
应激反应是一个动态过程,其特征表现为可预测的生化和心理变化。应激反应的生物标志物通常是随时间进行测量的,并且需要能够对随时间变化进行建模的统计方法。评估随时间变化的一种灵活方法是潜在增长曲线模型(LGCM)。然而,应激研究人员在研究生物标志物时很少使用LGCM,尽管其有诸多益处。应激研究人员可能并未意识到这些方法的有用之处。因此,本文的目的是在应激研究背景下对LGCM进行概述。我们特别强调使用这些方法的独特益处。通过假设示例来描述LGCM的四种形式。文中描述了LGCM的以下四种规格:基本LGCM、潜在增长混合模型、分段LGCM以及用于两个平行过程的LGCM。LGCM的规格在特里尔社会应激测试背景下进行了讨论。除了对这四种模型的讨论之外,我们还提出了关于建模非线性变化模式、评估模型拟合以及使用不同统计模型将生物标志物研究的特定研究问题联系起来的问题。本文的最后部分讨论了统计软件包以及LGCM更高级的建模能力。在线附录包含了来自两个统计程序的针对LCGM的带注释的示例代码。