Suppr超能文献

基于不同生长阶段的丝状产油微藻小颤藻转录组测序的脂质积累和代谢分析。

Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minus at different growth phases.

机构信息

Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.

Shandong Provincial Key Laboratory of Bioenergy Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qindao, 266101, Shandong, People's Republic of China.

出版信息

Bioprocess Biosyst Eng. 2017 Sep;40(9):1327-1335. doi: 10.1007/s00449-017-1791-1. Epub 2017 Jun 20.

Abstract

Filamentous oleaginous microalgae specie Tribonema minus is a promising feedstock for biodiesel production. However, the metabolic mechanism of lipid production in this filamentous microalgal specie remains unclear. Here, we compared the lipid accumulation of T. minus at different growth phases, and described the de novo transcriptome sequencing and assembly and identified important pathways and genes involved in TAG production. Total lipid increased by 2.5-fold and its TAG level in total lipid reached 81.1% at stationary phase. Using the genes involved in the lipid metabolism, the TAG biosynthesis pathways were generated. Moreover, results also demonstrated that, in addition to the observed overexpression of the fatty acid synthesis pathway, TAG production at stationary growth phase was bolstered by repression of the β-oxidation pathway, up-regulation of genes that funnels acetyl-CoA to lipid biosynthesis, especially gene encoding for phospholipid:diacylglycerol acyltransferase (PDAT) which funnels DAG to TAG biosynthesis.

摘要

丝状产油微藻 Tribonema minus 是生物柴油生产很有前景的原料。然而,这种丝状微藻产脂的代谢机制尚不清楚。在这里,我们比较了 T. minus 在不同生长阶段的油脂积累情况,描述了从头转录组测序和组装,并鉴定了参与 TAG 生产的重要途径和基因。在静止期,总脂增加了 2.5 倍,总脂中的 TAG 水平达到 81.1%。利用涉及脂质代谢的基因,生成了 TAG 生物合成途径。此外,结果还表明,除了观察到脂肪酸合成途径的过度表达外,静止生长阶段的 TAG 生产还受到β-氧化途径的抑制、将乙酰辅酶 A 分流到脂质生物合成的基因的上调所促进,特别是编码磷脂:二酰基甘油酰基转移酶(PDAT)的基因,它将 DAG 分流到 TAG 生物合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验