Bernatowicz Kinga, Zhang Ye, Perrin Rosalind, Weber Damien C, Lomax Antony J
Centre for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland. Department of Physics, ETH Zurich, 8029 Zürich, Switzerland.
Phys Med Biol. 2017 Jul 31;62(16):6595-6609. doi: 10.1088/1361-6560/aa7ab8.
We report on development of a new four-dimensional (4D) optimisation approach for scanned proton beams, which incorporates both irregular motion patterns and the delivery dynamics of the treatment machine into the plan optimiser. Furthermore, we assess the effectiveness of this technique to reduce dose to critical structures in proximity to moving targets, while maintaining effective target dose homogeneity and coverage. The proposed approach has been tested using both a simulated phantom and a clinical liver cancer case, and allows for realistic 4D calculations and optimisation using irregular breathing patterns extracted from e.g. 4DCT-MRI (4D computed tomography-magnetic resonance imaging). 4D dose distributions resulting from our 4D optimisation can achieve almost the same quality as static plans, independent of the studied geometry/anatomy or selected motion (regular and irregular). Additionally, current implementation of the 4D optimisation approach requires less than 3 min to find the solution for a single field planned on 4DCT of a liver cancer patient. Although 4D optimisation allows for realistic calculations using irregular breathing patterns, it is very sensitive to variations from the planned motion. Based on a sensitivity analysis, target dose homogeneity comparable to static plans (D5-D95 <5%) has been found only for differences in amplitude of up to 1 mm, for changes in respiratory phase <200 ms and for changes in the breathing period of <20 ms in comparison to the motions used during optimisation. As such, methods to robustly deliver 4D optimised plans employing 4D intensity-modulated delivery are discussed.
我们报告了一种针对扫描质子束的新型四维(4D)优化方法的开发情况,该方法将不规则运动模式和治疗机器的输送动力学纳入计划优化器。此外,我们评估了该技术在减少移动靶区附近关键结构剂量的有效性,同时保持有效靶区剂量的均匀性和覆盖范围。所提出的方法已通过模拟体模和临床肝癌病例进行测试,并允许使用从例如4DCT - MRI(四维计算机断层扫描 - 磁共振成像)提取的不规则呼吸模式进行逼真的4D计算和优化。我们的4D优化产生的4D剂量分布可以实现与静态计划几乎相同的质量,与所研究的几何形状/解剖结构或所选运动(规则和不规则)无关。此外,当前4D优化方法的实现对于肝癌患者4DCT上单个射野的计划求解所需时间不到3分钟。尽管4D优化允许使用不规则呼吸模式进行逼真的计算,但它对计划运动的变化非常敏感。基于敏感性分析,与优化期间使用的运动相比,仅当幅度差异高达1毫米、呼吸相位变化小于200毫秒以及呼吸周期变化小于20毫秒时,才发现靶区剂量均匀性与静态计划相当(D5 - D95 <5%)。因此,讨论了采用4D强度调制输送稳健地实施4D优化计划的方法。