Suppr超能文献

基于网络方法探索伤口愈合的基因组机制。

Exploring Wound-Healing Genomic Machinery with a Network-Based Approach.

作者信息

Vitali Francesca, Marini Simone, Balli Martina, Grosemans Hanne, Sampaolesi Maurilio, Lussier Yves A, Cusella De Angelis Maria Gabriella, Bellazzi Riccardo

机构信息

Center for Biomedical Informatics and Biostatistics, The University of Arizona Health Sciences, Tucson, AZ 85721, USA.

BIO5 Institute Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, AZ 85721, USA.

出版信息

Pharmaceuticals (Basel). 2017 Jun 21;10(2):55. doi: 10.3390/ph10020055.

Abstract

The molecular mechanisms underlying tissue regeneration and wound healing are still poorly understood despite their importance. In this paper we develop a bioinformatics approach, combining biology and network theory to drive experiments for better understanding the genetic underpinnings of wound healing mechanisms and for selecting potential drug targets. We start by selecting literature-relevant genes in murine wound healing, and inferring from them a Protein-Protein Interaction (PPI) network. Then, we analyze the network to rank wound healing-related genes according to their topological properties. Lastly, we perform a procedure for in-silico simulation of a treatment action in a biological pathway. The findings obtained by applying the developed pipeline, including gene expression analysis, confirms how a network-based bioinformatics method is able to prioritize candidate genes for in vitro analysis, thus speeding up the understanding of molecular mechanisms and supporting the discovery of potential drug targets.

摘要

尽管组织再生和伤口愈合的分子机制很重要,但目前人们对其仍知之甚少。在本文中,我们开发了一种生物信息学方法,将生物学与网络理论相结合,以推动实验,从而更好地理解伤口愈合机制的遗传基础,并选择潜在的药物靶点。我们首先在小鼠伤口愈合中选择与文献相关的基因,并从中推断出蛋白质-蛋白质相互作用(PPI)网络。然后,我们分析该网络,根据其拓扑特性对伤口愈合相关基因进行排序。最后,我们在生物途径中执行一个计算机模拟治疗作用的程序。通过应用所开发的流程获得的结果,包括基因表达分析,证实了基于网络的生物信息学方法如何能够对用于体外分析的候选基因进行优先级排序,从而加快对分子机制的理解,并支持潜在药物靶点的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e656/5490412/317fa4463573/pharmaceuticals-10-00055-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验