Suppr超能文献

印度新德里一家三级护理医院中糖尿病患者的药物不良反应研究。

Study of adverse drug reactions in patients with diabetes attending a tertiary care hospital in New Delhi, India.

作者信息

Singh Abhishank, Dwivedi Shridhar

机构信息

Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India.

Department of Medicine/Preventive Cardiology, Hamdard Institute of Medical Sciences & Research, Associated Hakeem Abdul Hameed Centenary Hospital, Jamia Hamdard, New Delhi, India.

出版信息

Indian J Med Res. 2017 Feb;145(2):247-249. doi: 10.4103/ijmr.IJMR_109_16.

Abstract

The present prospective observational study was carried out in a tertiary care hospital in New Delhi, India from May 2014 to June 2015 to report adverse drug reactions (ADRs) in patients with type 2 diabetes mellitus (T2DM) using antidiabetic drugs. A total of 220 patients (121 males, 99 females) were enrolled. ADRs were recorded on the prescribed form. Causality and severity assessment was done using Naranjo's probability scale and modified Hartwig and Siegel's severity scale, respectively. Commonly prescribed drugs were biguanides, peptide hormone and sulphonylurea. A total of 26 ADRs were recorded (16 in males and 10 in females). Most commonly observed ADRs were related to endocrine and gastrointestinal system. Severity assessment of ADRs showed seven (26.9%) ADRs as moderate, and 19 (73.1%) as mild. No severe reactions were observed. ADRs were mostly related to endocrine and gastrointestinal system. More information on prescribed drugs and their side effects is required for ensuring patient safety.

摘要

本前瞻性观察性研究于2014年5月至2015年6月在印度新德里的一家三级护理医院开展,旨在报告使用抗糖尿病药物的2型糖尿病(T2DM)患者的药物不良反应(ADR)。共纳入220例患者(121例男性,99例女性)。ADR通过规定表格记录。分别使用Naranjo概率量表和改良的Hartwig和Siegel严重程度量表进行因果关系和严重程度评估。常用药物为双胍类、肽类激素和磺脲类。共记录了26例ADR(男性16例,女性10例)。最常观察到的ADR与内分泌和胃肠道系统有关。ADR严重程度评估显示,7例(26.9%)为中度ADR,19例(73.1%)为轻度ADR。未观察到严重反应。ADR大多与内分泌和胃肠道系统有关。为确保患者安全,需要更多关于所开药物及其副作用的信息。

相似文献

引用本文的文献

本文引用的文献

3
The current state of diabetes mellitus in India.印度糖尿病的现状。
Australas Med J. 2014 Jan 31;7(1):45-8. doi: 10.4066/AMJ.2013.1979. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验