HySA/Catalysis, Catalysis Institute, Department of Chemical Engineering, University of Cape Town, Corner of Madiba Circle and South Lane, Rondebosch 7701, South Africa.
Engineering Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK.
Nat Commun. 2017 Jun 22;8:15802. doi: 10.1038/ncomms15802.
Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.
在酸性介质中催化氧气的还原是一个长期存在的挑战。尽管最活跃的金属铂的活性可以通过合金化得到实质性提高,但合金的稳定性仍然是一个问题。在这里,我们报告了负载在富石墨碳化硼上的铂纳米颗粒在酸性介质中的活性提高了 50-100%,与商业碳负载的铂纳米颗粒相比,循环稳定性也得到了改善。透射电子显微镜和 X 射线吸收精细结构分析证实了两种载体上铂纳米颗粒的形状、尺寸、晶格参数和团簇堆积都相似,而 X 射线光电子能谱和吸收光谱则表明了电子结构的变化。这表明,纯粹的电子金属-载体相互作用可以显著提高氧气还原活性,而不会引入形状、合金化或应变效应,也不会影响稳定性。因此,优化催化剂和载体之间的电子相互作用是一种很有前途的方法,可以用于先进的电催化剂,在这些催化剂中,优化催化纳米颗粒本身受到其他因素的限制。