Thermal and Fluid Transport Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Patna , Bihar 801103, India.
Langmuir. 2017 Jul 18;33(28):7191-7201. doi: 10.1021/acs.langmuir.7b01653. Epub 2017 Jul 6.
The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among others.
液滴的蒸发时空演化及其对寿命的影响对科学技术的各个领域都至关重要。尽管实验研究表明液滴蒸发有三种不同的模式,即恒定接触半径(CCR)、恒定接触角(CCA)和混合模式,但只有 CCR 和 CCA 模式得到了合理的建模。在这里,我们使用在平坦和微柱硅衬底上的液滴实验来表征混合模式。我们观察到,在初始 CCR 模式之后的完美 CCA 模式是在平坦硅衬底上的理想化,随着接触线遇到表面上的新鲜污染物,它会经历间歇性但反复的钉扎(CCR 模式)。接触线间歇性地钉扎(CCR 模式)导致粗糙度增加,从而降低了液滴在这些模式下的接触角,直到下一次去钉扎事件发生,然后进入 CCA 蒸发模式。我们实验中的空气传播污染物大多松散地附着在表面上,并随后退的接触线一起移动。结果是明显粗糙度的逐渐增加,以及 CCR 模式相对于 CCA 模式的程度增加,导致在蒸发的混合模式期间观察到的接触角显著减小。与平坦样品上松散附着的空气传播污染物不同,微柱作为固定粗糙度特征。当接触线在柱之间后退时,表观粗糙度会围绕平均值波动。在这些表面上的蒸发表现出黏附跳跃运动,随着液滴尺寸变得与柱间距相当,混合模式的持续时间会变短。我们将这种动态粗糙度纳入经典蒸发模型中,以准确预测平坦和微柱硅表面的三个模式下的液滴演化。我们相信,这个框架也可以扩展到模拟纳米流体和咖啡环效应等的蒸发。