Suppr超能文献

设计能够介导半导体纳米晶体和分子之间能量转移的发射器配体。

Designing Transmitter Ligands That Mediate Energy Transfer between Semiconductor Nanocrystals and Molecules.

机构信息

Department of Chemistry, University of California , Riverside, California 92521, United States.

出版信息

J Am Chem Soc. 2017 Jul 19;139(28):9412-9418. doi: 10.1021/jacs.6b08783. Epub 2017 Jul 6.

Abstract

Molecular control of energy transfer is an attractive proposition because it allows chemists to synthetically tweak various kinetic and thermodynamic factors. In this Perspective, we examine energy transfer between semiconductor nanocrystals (NCs) and π-conjugated molecules, focusing on the transmitter ligand at the organic-inorganic interface. Efficient transfer of triplet excitons across this interface allows photons to be directed for effective use of the entire solar spectrum. For example, a photon upconversion system composed of semiconductor NCs as sensitizers, bound organic ligands as transmitters, and molecular annihilators has the advantage of large, tunable absorption cross sections across the visible and near-infrared wavelengths. This may allow the near-infrared photons to be harnessed for photovoltaics and photocatalysis. Here we summarize the progress in this recently reported hybrid upconversion platform and point out the challenges. Since triplet energy transfer (TET) from NC donors to molecular transmitters is one of the bottlenecks, emphasis is on the design of transmitters in terms of molecular energetics, photophysics, binding affinity, stability, and energy offsets with respect to the NC donor. Increasing the efficiency of TET in this hybrid platform will increase both the up- and down-conversion quantum yields, potentially exceeding the Shockley-Queisser limit for photovoltaics and photocatalysis.

摘要

分子能量转移的控制是一个很有吸引力的提议,因为它使化学家能够合成地调整各种动力学和热力学因素。在这篇观点文章中,我们研究了半导体纳米晶体(NCs)和π共轭分子之间的能量转移,重点关注有机-无机界面处的传输配体。通过这个界面有效地传递三重态激子可以使光子定向,从而有效地利用整个太阳光谱。例如,由半导体 NCs 作为敏化剂、结合的有机配体作为传输体和分子湮灭剂组成的光子上转换系统具有在可见光和近红外波长范围内可调谐的大吸收截面的优点。这可能允许利用近红外光子进行光伏和光催化。在这里,我们总结了最近报道的这种混合上转换平台的进展,并指出了挑战。由于 NC 给体到分子传输体的三重态能量转移(TET)是瓶颈之一,因此重点在于从分子能量学、光物理、结合亲和力、稳定性和相对于 NC 给体的能量偏移等方面设计传输体。提高这种混合平台中 TET 的效率将增加上转换和下转换量子产率,有可能超过光伏和光催化的肖克利-奎塞尔极限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验