Al Khatib Amer, Siomava Natalia, Iannini Antonella, Posnien Nico, Casares Fernando
Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain.
Department of Biology, University of Florence, I-50019, Florence, Italy.
Biol Open. 2017 Aug 15;6(8):1155-1164. doi: 10.1242/bio.023606.
Organ size and pattern results from the integration of two positional information systems. One global information system, encoded by the Hox genes, links organ type with position along the main body axis. Within specific organs, local information is conveyed by signaling molecules that regulate organ growth and pattern. The mesothoracic (T2) wing and the metathoracic (T3) haltere of represent a paradigmatic example of this coordination. The Hox gene (), expressed in the developing T3, selects haltere identity by, among other processes, modulating the production and signaling efficiency of Dpp, a BMP2-like molecule that acts as a major regulator of size and pattern. However, the mechanisms of the Hox-signal integration in this well-studied system are incomplete. Here, we have investigated this issue by studying the expression and function of the Six3 transcription factor during wing and haltere development. We find that in both organs, Dpp defines the expression domain of through repression, and that the specific position of this domain in wing and haltere seems to reflect the differential signaling profile among these organs. We show that expression in wing and haltere primordia is conserved beyond in other higher diptera In , is necessary for the growth of wing and haltere. In the wing, is required for the growth of the most anterior/proximal region (the 'marginal cell') and for the correct formation of sensory structures along the proximal anterior wing margin; the halteres of mutants are also significantly reduced. In addition, in the haltere, is necessary for the suppression of sensory bristles.
器官的大小和形态源于两个位置信息系统的整合。一个由Hox基因编码的全局信息系统,将器官类型与沿主体轴的位置联系起来。在特定器官内,局部信息由调节器官生长和形态的信号分子传递。果蝇的中胸(T2)翅和后胸(T3)平衡棒就是这种协调的一个典型例子。在发育中的T3中表达的Hox基因Ultrabithorax(Ubx),通过调节Dpp(一种类似于BMP2的分子,是大小和形态的主要调节因子)的产生和信号传导效率等过程来选择平衡棒的特征。然而,在这个经过充分研究的系统中,Hox信号整合的机制并不完整。在这里,我们通过研究Six3转录因子在翅和平衡棒发育过程中的表达和功能来探讨这个问题。我们发现,在这两个器官中,Dpp通过抑制作用定义了Six3的表达域,并且该域在翅和平衡棒中的特定位置似乎反映了这些器官之间不同的信号传导模式。我们表明,Six3在翅和平衡棒原基中的表达在其他高等双翅目昆虫中是保守的。在果蝇中,Six3对翅和平衡棒的生长是必需的。在翅中,Six3对于最前端/近端区域(“边缘细胞”)的生长以及沿近端前翅边缘的感觉结构的正确形成是必需的;Six3突变体的平衡棒也显著减小。此外,在平衡棒中,Six3对于抑制感觉刚毛是必需的。